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ABSTRACT

Mateusz Pipieni. An approach to measuring the relation between risk and return. Bayesian analysis
for WIG data. Folia Oeconomica Cracoviensia 2007, 48: 95-117.

The main goal of this paper is an application of Bayesian inference in testing the relation
between risk and return of the financial time series. On the basis of the Intertemporal CAPM
model, proposed by Merton (1973), we built a general sampling model suitable in analysing
such relationship. The most important feature of our model assumptions is that the possible
skewness of conditional distribution of returns is used as an alternative source of relation
between risk and return. Thus, pure statistical feature of the sampling model is equipped with
economic interpretation. This general specification relates to GARCH-In-Mean model propo-
sed by Osiewalski and Pipieri (2000).

In order to make conditional distribution of financial returns skewed we considered a con-
structive approach based on the inverse probability integral transformation. In particular, we apply
the hidden truncation mechanism, two approaches based on the inverse scale factors in the positive
and the negative orthant, order statistics concept, Beta distribution transformation, Bernstein density
transformation and the method recently proposed by Ferreira and Steel (2006).

Based on the daily excess returns of WIG index we checked the total impact of conditional
skewness assumption on the relation between return and risk on the Warsaw Stock Market.
Posterior inference about skewness mechanisms confirmed positive and decisively significant
relationship between expected return and risk. The greatest data support, as measured by the
posterior probability value, receives model with conditional skewness based on the Beta
distribution transformation with two free parameters.
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1. INTRODUCTION

The relationship between risk and return constitutes the foundation of financial
economics. Numerous papers have investigated this trade-off testing the func-
tional dependence of excess return on the level of risk, both measured by
conditional expectation and conditional variance of aggregate wealth. Accor-
ding to Merton (1973), given risk aversion among investors, when investment
opportunity set is constant, there is a positive relationship between expected
excess return and the level of risk. Hence, it is possible to express the risk in
terms of expected premium generated.

Historically, authors have found mixed empirical evidence concerning the
relationship. In some cases a significant positive relationship can be found, in
others it is insignificant and also some authors report it as being significantly
negative. For instance, using monthly U.S. data French, Schwert and Stambaugh
(1987) and also Campbell and Hentschel (1992) found a predominantly positive
but insignificant relationship. Glosten, Jagannathan and Runkle found a negative
and significant relationship on the basis of Asymmetric-GARCH model, instead of
commonly used GARCH-in-Mean framework; see Engle, Lilien and Robins (1987).
Scruggs (1998) summarises the empirical evidence of considered relationship.

Recent empirical work offers some resolutions to the conflicting results in
the literature. Including into Merton (1973) Intertemporal Capital Asset Pricing
Model (ICAPM) an additional risk factor, measured by long term government
bond returns, Scruggs (1998) restores a positive relationship between risk and
return. Pastor and Stambaugh (2001) considered a possibility of structural breaks
in the risk-return relationship. Brandt and Kang (2004) investigated lead-lag
correlations and find a strong negative dependence between the contempora-
neous innovations and both the conditional mean and conditional variance of
excess returns. Ghysels, Santa-Clara and Valkanov (2006) find a positive risk
aversion coefficient using a mixed data sampling (MIDAS) approach to estima-
ting conditional dispersion. Campbell and Hentschel (1992), Guo and Whitelaw
(2003) and Kim, Morley and Nelson (2004) find a positive relationship when
volatility feedbacks are incorporated. Also many authors investigated a nonli-
near relationship between market risk and return, finding some evidence
confirming positive risk premium; see Pagan and Hong (1990) for nonparametric
approach and for other methods: Backus and Gregory (1993), Whitelaw (2000)
and Linton and Perron (2003).

The main goal of this paper is an application of Bayesian model comparison,
based on the posterior probabilities, in testing the relation between risk and
excess return of the financial time series. We revisited ICAPM model in order
to investigate the empirical importance of the skewness assumption of the
conditional distribution of excess returns. On the basis of the ICAPM model, we
built a general sampling model suitable in estimating risk premium. The most
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important feature of our model assumptions is that the possible skewness of
conditional distribution of returns is used as an alternative source of relation
between risk and return. Thus, pure statistical feature of the sampling model is
equipped with economic interpretation. This general specification relates to
GARCH-In-Mean model proposed by Osiewalski and Pipieri (2000). In order to
make conditional distribution of financial returns skewed we considered a con-
structive approach based on the inverse probability integral transformation. In
particular, we apply the hidden truncation mechanism, two approaches based
on the inverse scale factors in the positive and the negative orthant, order
statistics concept, Beta distribution transformation, Bernstein density transfor-
mation and the method recently proposed by Ferreira and Steel (2006).

Based on the daily excess returns of index of the Warsaw Stock Exchange
we checked the total impact of conditional skewness assumption on the relation
between return and risk on the Warsaw Stock Market. On the basis of the
posterior probabilities and posterior odds ratios, we test formally the explanatory
power of competing, conditionally fat tailed and asymmetric GARCH processes.
Additionally we present formal Bayesian inference about conditional asymmetry
in all competing specifications on the basis of the skewness measure defined by
Arnold and Groenveld (1995).

2. CREATING ASYMMETRIC DISTRIBUTIONS

The unified representation of univariate skewed distributions that we study is
based on the inverse probability integral transformation.

The family IP = {g, £:Q — R}, with the representative density s(.16, 17,) is
called the skewed version of the symmetric family I (of random variables with
unimodal symmetric density f{.18) and distribution function F, such that the
only one modal value is localised at x = 0) if s is given by the form:

s(x 16, n,) = f(x16) - p (F(x16) 1n,), for x € R. (1)

As seen from (1) the asymmetric distribution s (.16, 7,) is obtained from £ (.16)
by applying the density p(.In,) as a weighting function. The resulting family IP
is parameterised by two vectors, 8 and 1, where first is strictly inherited form
the symmetric family /, while n, contains specific information about the skewing
mechanism. The most important feature of (1) is that the distributions s and f
are identical if and only if p(.In,) is the density of the uniform distribution over
the unit interval; i.e. s = fiff p (yin,) = 1, for each y €(0, 1).

Within the general form (1) several classes of distributions P have been
imposed on some specific families of symmetric random variables. The first
approach of making distribution F(.16) skewed applied hidden truncation ideas.
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The skew-Normal distribution proposed by Azzalini (1985) constitutes the first
explicit formulation of such a skewing mechanism. In general this approach
assumes, that:

s(x 18, v,) = 2 - f(x18) - F(y, - x18), for xeR, (2)

where 7, eR is the only one parameter which governs the skewing mechanism;
1N, = (%). In this case p(ylyy) = 2 - F (y, - F'(»)6), for y (0, 1), and hence in (2)
positive and negative values of vy, define right and left skewed distributions.
Since, for each y €(0, 1), it is true that p(yl0) = 2 - F(O - F'(»)ly, = 0) = 1, the case
¥, = 0 leads to symmetry in (2).

As an alternative Jones (2004) proposed to apply the family of Beta
distributions in order to define p(.In,). This is a formal application of the
distribution of order statistics in skewing the family of random variables I. In
particular s (x 16, %) can be defined as follows:

5 (x 16, 1) = F(x16) - Be(F(xI6) ly,, 1), for x eR, 3)

where Be(y la, b) is the value of the density function of the Beta distribution
with parameters a > 0 and b > 0, calculated at y €(0, 1). Since Be(.I1, 1) defines
the density of the uniform distribution, we obtain, that for y, = ;! = 1 the
density s is symmetric. In (3) there is still only one parameter ¥, > 0, which
defines the type of asymmetry. If ¥, > 1, then s is right asymmetric, while ¥, <
1 constitutes skewness to the left.

The family IP of skewed distributions proposed in (3) can be generalised, by
incorporating Beta distribution with two free parameters @ > 0 and b > 0. This
leads to the following form of s:

s (x 10, n,) = f (x16) - Be(F(x16) la, b), for x eR. (4)

In this case the vector 1, = (a, b), which governs skewness, contains two
parameters. If a = b = 1 we retrieve symmetry, while a < b or a > b defines left
or right skewness. It can be shown that the skewing mechanism (4) in case,
when [ is the family of Student-t distributions yields skewed Student-t family
proposed by Jones and Faddy (2003).

Another method for introducing skewness into an unimodal distribution is
based on the inverse scale factors on the left and on the right side of the mode
of the density f(.16). Investigating this concept Ferndndez and Steel (1998)
proposed skewed Student-t family of distributions with the density £, (.lv, 0, 1, )
defined as follows:

2
ﬂks (XIOI 1; v, yl) = W { f; (X . 71'0; 1; V) . I-ne, i) + f; (X . YJ_IIO; 1; V) ) I((), 4.”)];
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where f, (xlu, h, v) denotes the value of the density function of the Student-t
distribution with v > 0 degrees of freedom, modal parameter peR and inverse
precision h > 0, calculated at xeR. The approach studied by Ferndndez and Steel
(1998) can be applied to any family I of symmetric distributions by defining in
(1) the following skewing mechanism for each ye(0, 1):

{ﬂYI “F s+ FOR - F_l(}’)[(n.s;n}
N+ RE() '

piyv) = ()

for 9, > 0. The resulting density s (.18, 7,) is symmetric if y, = 1, while 5, > 1 or
7 < 1 make distribution right or left skewed.

In the next approach we apply Bernstein densities, which are convex
discrete mixtures of appropriate densities of Beta distribution. For posterior
inference of such a family of distributions see Petrone and Wasserman (2002).
The following form of p constitutes flexible skewing mechanism:

plwy, .., w,)= Z w;Be (Ylj, m-j+1), ye (0, 1),
j=1

where m > 0, wo, w + ...+ w, =1

m

The resulting s (.16, n,) takes the form:

s (x16,m,) = fix16) - Y w; Be (F(x18) | j, m—j +), for x €R, (6)

=1

where n, = (w,, ..., W), w;€(0, 1) forj =1, ..., m-1, and in (6) w,, = 1- wy-...- W, ;.
Equal weights w; = m lead to the symmetry in (6). However, in general the
resulting skewed densities (6) are often multimodal, especially for large values of
m. The main disadvantage of skewing mechanism based on (6) is, that we loose
some regularities of constructed family IP in favor of total flexibility in data fit.

Ferreira and Steel (2006) considered a constructive representation of the
univariate skewness by defining a mechanism which does not depend on F, does
not change location of the modal value and also keep the moment structure
unchanged. Starting from a general form of skewing mechanism:

P W) =1+ ln)g(r)-11, r,eR, (7)

they proposed an approach of deriving appropriate I(.) and g(.ly,) meeting
required properties. In particular, according to Ferreira and Steel (2006), it is
possible to consider:
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3
[% arctan(Zy/S)J
I (74) = 0.5 ’
1-2 Jg(tm)dt
0

where g(Y17) = Byl 05 + [2 = By = 051915, 4], for B of the following
form:

_ exp(y,y-1)
hx(yly)=h (2(exp(0.5Y4) - 1)]'

with h defined as a polynomial of order 2; h (z) = -32z* + 24z%. Such a particular
solution defines skewing mechanism equipped with properties restricted to the
postulates of the construct. Ferreira and Steel (2006) do not present exhaustive
characterisation of skewing mechanism (7), making theirs individual proposi-
tion focused only on modelling distributional skewness around the mode.

The next skewing mechanism is another example of an application of the
inverse scale factors idea. Four years before Fernandez and Steel (1998) published
theirs skewed version of the t distribution, Hansen (1994) proposed the follo-
wing simple generalisation of the Student-t density (normalized to have unit
variance):

. 3
ol e
5 (0, 1, v, %) = i (8)
2 N2
bc[1+v—}—2[lix++yf] J if X2,

where v>2, ye(-1;1),a=4 -5 -c(v-2)/(v-1), =1+ 3 - 3%a? and

= 0.5(v+ 1))
TTO.5v)Vr(v-2)

If v, = 0, then the function s(xI0, 1, v, 0) represents the density of the
symmetric Student-t distribution with v > 2 degrees of freedom, zero mode
and unit variance, while ye(~1, 0) and ye(0, 1) enable for left and right
asymmetry respectively. Here we will show, that the Hansen skewed Student-t
density can be treated within (1) as a result of imposing a particular skewing
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mechanism based on the inverse scale factors on the left and on the right side
of the mode. Let consider a random variable Z, with the density of the
following form:

[((x10, 1, v, ¥5) = { f(x/(1-¥)I0, 1, v) - I, o) + [ (x/(1 + )10, 1, v) - L, , .,(0)},
Y.e(-1; 1), v> 2,

where [, (.10, 1, v) is the density of the Student-t distribution with v > 2 degrees
of freedom, zero mean and unit variance. The mean E and the variance V of Z,
are given as follows:
E(Z) = a = 4%c(v-2)/(v-1)
V(Z) =P =1+ 3 y2-d?,

where:

co 0.5 +1))
T TO.5)Vr(v-)

It can be shown that the skewed density proposed by Hansen (1994) is the
density of the random variable X, obtained by standarisation of Z:

Consequently Hansen (1994) idea can be adapted to any symmmetric and
unimodal density f (with distribution function F) by imposing the following
skewing mechanism:

F—l F—l
f(l__(igjl(o;(m)(y) + f(l__'_(%JI[().s;l)(y)

by.) =
PO FEw)

9

, for . e(-1; 1).

In spite of a very similar form of mechanism defining Fernandez and Steel
(1998) skewed Student-t to the one related to Hansen (1994), both generalisa-
tions lead to different classes of asymmetric distributions with Student-type tails.
But some equivalences can be discovered. In particular, for each ¥, € (-1, 1), there
exist only one 7" > 0 (namely %" = {(1 + %)/(1-%)}™%) such, that mechanisms
r (ly) in (9) and p (.ly,) in (5) generate skewed densities with the same ratio of
<he probability mass on the left and on the right side of the mode.
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In the next section we present basic model framework, which is a starting
point in generating conditionally heteroscedastic models for daily returns. In
order to create the set of competing specifications, we make use of all presented
skewing mechanisms.

3. BASIC MODEL FRAMEWORK AND COMPETING SKEWED CONDITIONAL
DISTRIBUTIONS

Let denote by x; the value of a stock or a market index at time j. The excess
return on x,, denoted by y, is defined as the difference between the logarithmic
daily return on x;in percentage points (7;= 100 In[x/x; ;]) and the risk free interest
rate (denoted by r/), namely y; = r~r/. The voluminous literature focused on
examination the relationship between risk and return bases on the Intertempo-
ral Capital Asset Pricing Model, proposed by Metron (1973). According to the
assumptions of Merton (1973) theory, expected excess return E is proportional
to the standard deviaton D (both conditional with respect to the information
set at time j, denoted by vy, ):

E (yj'l//j—l) = a'D(Y,'l‘V,'_l)- (10)

The coefficient o" > 0 in (10) measures the relative risk aversion of the
representative agent. Under assumption of the informational efficiency of the
market, the information set at time j can be reduced to the history of the process
of the excess return, namely y; , = (...., ¥, ¥;4). Consequently an econometric
model of the relationship between risk and return should explain the properties
of the conditional (with respect to the past of the process of y) distribution of
the excess return y;. It is also of particular interest to find any linkage between
expected excess return and the measure of dispersion of the distribution of
conditional to y;_,. Following Engle, Lilien and Robins (1987), French, Schwert
and Stambaugh (1987) and Osiewalski and Pipieri (2000) we consider for Vi
a simple GARCH-In-Mean process, defined as follows:

yi=la+E@) b +u,j=1,2, (11)

where u; = [z,—E(z,.)]hl.“S, and z; are independently and identically distributed
random variables with E(z) < + l. The scaling factor h; is given by the GARCH(1, 1)
equation; see Bollerslev (1986):

= 2
by = o, + o * + Bihy .

The specific form of the conditional distribution of y; is strictly dependent
on the type of the distribution of z. Initially, in model denoted by M, we
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assumed for z; the Student-t density with unknown degrees of freedom v > 1,
zero mode and unit inverse precision:

z; IM~iiSt(v, 0, 1), v > 1.

The density of the distribution of z is given as follows:

2 (v+1)/2
p(ZIM))'_‘f;(ZlO' 1’ V):I]:(((())—..SS(VV)%%[]. +%] . (12)

Given model M,, E~(z) = 0, u; = zh"5, and hence (11) reduces to the simpler
form y; = ah* + 1, Let denote by 0 = (e, &, t,, B;, v) the vector of all parameters
in model M,. Here the conditional distribution of the error term u; is the
Student-t distribution with v > 1 degrees of freedom, zero mode and inverse
precision h;:

Py, 6, M) = B*% - fi(h 3 ul0, 1, v),j=1,2, ...

Consequently the following density represents conditional distribution of
the excess return at time j:

PO Wy 6, M) = B9 - [0S . (yah®$)I0, 1, v),j =1, 2, ... .

Given model M, the expected excess return (conditional to the whole past
V.,) is proportional to the square root of the inverse precission h;:

E (v, 6, M) = a hPS. (13)

The parameter a eR captures the dependence between expected excess
return and the level of risk both measured by E(y/ly;.,, M,, 6) and the scale
parameter h® respectively. Initially the relationship between risk and return
stated in (10) relates to the conditional standard deviation as a measure of risk.
In our approach, the relative risk aversion coefficient &' can be obtained by
reparameterisation of the model in terms of variance, instead of introducing
inverse precision. However our approach, based on the more general scale
measure, enables to test Merton (1973) theory in case of more volatile excess
returns, which do not posses conditional second moment.

Now we want to construct a set of competing GARCH specifications {M,
i=1, ..., k} by introducing asymmetry into density of the conditional distribu-
tion of excess return, p(yly,_,, 8, M,). The resulting asymmetric distributions are
obtained by skewing the distribution of the random variable z; according to
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methods presented in the previous section. The resulting asymmetric density of
z; is of the general form related to the formula (1):

plz IM,.) =f(210, 1, v) - p [F(z) m;, M), forzeR,i=1, 2, ..., k,

where p (n;, M;) defines the skewing mechanism parameterised by the vector
ni, and Fy() is the distribution function of the Student-t random variable with
v > 1 degrees of freedom parameter, zero mode and unit inverse precision.
Consequently, the conditional distribution of the error term «; in model M;
takes the form:

plty,,, 6, n, M) = %5 fi(h7 %0, 1, v) - plF(h7*%u) I, M), j=1,2, ...

This leads to the general form of the conditional distribution of daily excess
return y; in model M;

P(Y,- |\|’,‘_1; 8, n, M) = h,'_“'s : ﬁ(h,'—“'s(y,’uj)loi 1, v) - plF ,(h,*"s(y,ﬂ,-))m;, M), (14)
j=1,2, ...,

where 1, = [0 + E(z)}h"*. As the first specification, namely M|, we consider GARCH
model with skewed Student-t distribution obtained by the method investigated
by Ferndndez and Steel (1998). The skewing mechanism p [.In,, M,] is given by
the formula (§), where 1, = 7, > 0, and 7, = 1 defines symmetry (i.e. M, reduces to
the model M, under restriction 7 = 1). The model M, is the result of skewing
conditional distribution p (yly,,, 6, M,) according to the hidden truncation met-
hod. In this case p [.In,, M,] is defined by (2), 1, = 1, €R, while y, = 0 defines
symmetric Student-t conditional distribution for y,. In model M, we apply Beta
skewing mechanism with one asymmetry parameter. Density p[.In,, M,] is defined
by (3), where 1, = 3, > 0, and 7, = 1 reduces our model to the case of M,.
Specification M, is based on the Skewed Student-t distribution proposed by Jones
and Faddy (2003). In this case p [.In,, M,] is defined by the formula (4), n, = (4, b),
fora>0and b>0and a=>b =1 reduces M, to M,. In model M; we apply Bernstein
density based skewing mechanism for m = 2 parameters. It means that the skewing
mechanism p [.In;, M,] is defined by the formula (6), n, = (w,, w,) and w, = w, = 1/3
retrieves symmetry of the conditional distribution of y;, In model M we applied
a construct defined by Ferreira and Steel. Skewing mechanism p |.In,, M} is defined
by (7), while 1, = 7, €R and ¥, = 0 defines conditional symmetry. In specification
M, we considered Hansen (1994) skewed Student-t conditional distribution, by
applying mechanism p [In7,, M,] defined in (9). Here n, = %, (-1, 1), while 3, =0
reduces M, to the case of conditional symmetry.

All formulated specifications assume, that the conditional distribution of
y; is heteroscedastic, where time varying dispersion measure /i, defined by
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GARCH(1, 1) specification, is a function of the whole past of the process. The
degrees of freedom parameter v > 1 enable for fat tails of p (yly,,, 6, n;,, M)). In
each specification it is also possible to test whether the dataset supports
conditional distribution with Gaussian-type tails (for v—s{). The possible asym-
metry of conditional distribution can be captured in all models by the presence
of skewing mechanism. Additionally, skewness of the distribution of z in M,
generates nonzero expectation E (z) < + {. Consequently in (11):

E(ly.y, 6, m, M) = [0 + E(Z’-)]h’-”'S, for E(z) # 0. (15)

And hence for each specification M, i = 1, 2, 3, 4, 5, 6, 7, conditional
skewness of excess returns y; can be interpreted as an additional source of the
relationship between risk and return. This idea fully corresponds to Harvey and
Siddique (2000), who emphasize, that systematic skewness is economically
important and governs risk premium.

We denote by y¥ = (y,, ..., y) €Y the vector of observed up to day t (used
in estimation in day t) daily excess returns and by y/° = (¥, ,, ..., V;.,) €Y, the
vector of forecasted observables at time t. The following density represents the
i-th sampling model (i=1, 2, 3, 4, 5, 6, 7) at time t:

i

po, v, M) [Trolvon 6, M), i=1,2,3,4,5,6,7.

=1

Constructed at time ¢ Bayesian model M, i.e. the joint distribution of the
observables (', y/%) and the vector of parameters (6, n) takes the form:

P(}’m; Yf(t)l 81 77; |Ml) = P(}’m: yf(t)lel 77:: M:) : P (91 77,‘ lMi); (16)

and requires formulation of the prior distribution p (8, n,IM,), for each specifica
tion M,. In general we assumed the following prior independence:

p@, n,1M) =p@M) - p M), i=1,2,3,4,5,6,7. (17)

In this paper we assume that for each i

p@ M) = p(6) = p(a) pla,) play) p(B,) p(v),

where p(c) is normal with zero mean and variance 10, p(e,) is exponential with
mean 1, p(o;) and p(B,) are both uniform over (0, 1), while p(v) defines
exponential distribution with mean (and standard deviation) equal to 10.

In order to make posterior inference about conditional asymmetry, as well
as to compare prior information about this phenomenon in all competing
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specifications, we considered skewness measure proposed by Arnold and Gro-
enveld (1995). Such a skewness measure, applied to the density p (yly,,, 6, 0,
M)) takes the form:

Y= 1-2 - P [Mod (y)M) ly,.,, 6, n, M}, (18)

where P [y, 6, n, M) denotes the cumulative distribution function of the
conditional distribution of daily return y; (given the whole past, parameters and
model M)) and Mod (yM;) denotes the modal value of this distribution. The case
of symmetry is defined for y, = 0, while 3, < 0 or 3, > 0 imply left or right
skewness of p(yl.l Vi 6, My M),

Initially, we use (18) to control the total prior information about asymmetry,
which is included in each specification through the distribution p(n,IM;). Our
goal is to introduce prior information about 7; in such a way, that the resulting
prior distribution of skewness measure ¥, elicited in all models, are as much
similar as it is possible. In order to perform this task the prior distribution of
model specific (skewness) parameters can be defined in the following way. For
i=1,n=%>0,and p (n,IM,) is the density of the standardized lognormal
distribution truncated to the interval y,e (0.5; 2). Fori= 2, 1, = € R, and p (n,IM,)
is the density of the normal distribution with zero mean and variance equal to
3.Fori=3,1n;=7>0, and p (n,IM,) is the density of the standardized lognormal
distribution. For i = 4, n, = (4, b), and p (1,IM,) is the product of the densities
of the standardized lognormal distribution. For i = 5, 15 = (w,, w,) and p (75IM;)
is the product of the normal densities, both with mean 0.33 and variance 36,
truncated by the following set of restrictions: w; > 0, w, > 0, w, + w, < 1. For
i=6,1n=%¢cR, and p (nM,) is the density of the normal distribution with
mean 0 and variance equal to 20. Fori = 7, n, = %,e(-1, 1), and p (n,IM,) is the
density of the uniform distribution truncated to ye[-0.5, 0.5]. All competing
specifications, together with the prior distributions for 7, are presented in Table 1.

4. EMPIRICAL RESULTS FOR WIG DATA

In this part we present an empirical example of Bayesian comparison of all
competing specifications. We also discuss the results of the total impact of the
conditional skewness assumption on the relationship between risk and return
on the Warsaw Stock Exchange (WSE). Our dataset was constructed on the basis
of T = 2144 observations of daily growth rates, r;, of the index of the WSE (WIG
index) from 06.01.98 till 31.07.06. The risk free interest rate, r,f, used in excess
return y, was approximated by the WIBOR overnight interest rate (WIBORo/n
instrument). The time series of the excess returns y, as well as the risk free
interest rate, are depicted on Figure 1. As seen from the grey plot in Figure 1,
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—— excess return on WSE o-fisk free rate: WIBORt/n

T 0.06

T 0.05

i1 0.04

r 0.03

-2

-4

+ 0.02
-6
3 0.01
-8
-10 T T T — 0
06.01.1998 05.01.00 04.01.02 06.01.04 28.12.05

Fig. 1. Daily excess return on the Warsaw Stock Exchange from 06.01.1998 to 31.07.2006;

T = 2144 observations (black plot) and annualised risk free interest rate approximated by WIBOR
short term interest rate (grey plot)

mean = 0.0214; std. dev. = 1.49; skewness = -0.28; kurtosis = 6.58

huge outliers, caused by changes in the monetary policy, together with the
regions of almost no variability at the end of the 90s, depict very volatile
behaviour of the Polish zloty short term interest rate. Thus, it was very important
to check the sensitivity of our results with respect to the changes in the
definition of the risk free interest rate. Our empirical results remained practically
unchanged for r/ calculated on the basis of the middle and long term WIBOR
zloty interest rate and also in the case rf = 0 for each j.

Table 2 presents decimal logarithms of the marginal data density value, as
well as the posterior probabilities P(M;ly"), both calculated for each of competing
models M;, i =0, 1, ..., 7. The initial specification M,, built on the basis of the
conditional symmetric student-t distribution, receives a little data support, as
the posterior probability P(M,ly") is not greater than 8.5%. The all remaining
posterior probability mass is attached to specifications which allow for condi-
tional skewness. It is clear, that the modelled dataset of excess returns of WIG
index do not support decisively superiority of any of competing skewing
mechanism. The mass of posterior probabilities is rather dispersed and strongly
distributed among models which allow for conditional asymmetry. The greatest
value of P(M|ly"Y) receives conditionally skewed Student-t GARCH model gene-
rated by the Beta distribution transformation with two free parameters. In this
case the value of posterior probability is greater than 40%. The dataset also
support conditionally skewed Student-t GARCH model with hidden truncation
mechanism (M,) and Beta distribution transformation with one free parameter



Table 1

Presentation of the set of compenting skewing mechanisms and the prior distributions
of skewness parameters, p (17;IM)), i=1, 2, 3, 4,5, 6, 7

M, M; Mg M;
Azzalini (1985), y, € R, y~ N(0,3) | Beta distribution with one parameter Ferreira and Steel (2006) Bernstein densities (2 parameters)
(Jones 2004), 13 >0 In y3 ~ N (0,1) construct, 7, ~ N (0,20) wy ~ N (0.33;36), wy ~ N (0.33;36)

POIR) =2 - Fly, - F1()l0) POy = Be(lys, 1571) POt = 1+H)sWv) - 11 | piiwy, wp) = wy Be(1,3) +
+ Wy Be(y12,2)+(1-w-wy)Be(y!3,1)
symmetry: , = 0 symmetry: y3 = 1 symmetry: v, =0 symmetry: w; = 1/3,i=1,2,3
M, M, M,
Beta distribution, two parameters Hansen (1994) skewed Student-t Inverse scale factors, Fernandez and Steel (1998),
(Jones, Faddy 2003) ¥s ~ U(-0.5; 0.5) Inyy ~ N(©O,1), n, € (0.5;2)

Ina ~ N(0,1), Inb ~ N(0,1), a>b, b>0

Fly) Fly) 2 Rn F'oigos + 7' Flolgs)
, _ f[ ~ ]I(O;O.S)(y)+f[ 1(0_5;1)()/) P(}’IY = 1 (0;0.5) 1 (0.5 1)
p(la,b) = Be(yla,b) . 1-7 T+ys 1 v+ FF )
FE )

symmetry:a=b=1 symmetry: y; =0 symmetry: = 1
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(M,). Those three models cumulate more than 90% of the posterior probability
mass, making all remained conditionally skewed specifications improbable in
the view of the data. Thus, inverse scale factors (models M, and M), the
Bernstein density transformation (with 2 free parameters) and Ferreira and Steel
(2006) construct lead to very doubtful explanatory power of the resulting
GARCH specification. Those models are strongly rejected by the data, as the
values of posterior probabilities are much smaller than posterior probability of
symmetric GARCH model (M,).

In Table 3 we present the results of Bayesian inference about tails and skewness
of the conditional distribution of daily excess returns in all competing specifica-
tions. Apart from making inference about model specific skewness parameters in
each model, we also put posterior means and standard devations of Arnold and
Groenveld (1995) skewness measure y,,, as well as the values of posterior pobability
of left asymmetry of the density p(yly,,, 6, n, M) (i.e. P(, < Oy, M)).

In case of conditional symmetry (model M,) the dataset clearly support the
hypothesis of existence of the variance of the distribution p(yly,,, 6, M,), because
the whole density of the posterior distribution of the degrees of freedom parameter
v is located on the right side of the value v = 2. Also, rather tight location of p (viy®,
M,) around the value v = 7 in model M,, assures that the conditional distribution
of daily returns possesses moments of order till 7. Those properties of the posterior
distribution p(vly¥, M,) remains unchanged in case of all conditionally skewed
specifications. Only in model M,, Beta distribution transformation with 2 free
parameters both, location and scale of the posterior density of the degrees of
freedom parameter change substantially. However the moment structure of the
conditional distribution if y, remains rather the same in model M,. The dispersion
of the posterior distribution of v, as measured by the posterior standard deviation,
precludes conditional normality in all competing specifications.

The posterior means and standard deviations of both, asymmetry parame-
ters 7, and skewness measure y, (see Arnold and Groenveld 1995) indicate, that,
in the majority of the specifications, there is strong evidence in favour of left
skewness of the conditional distribution of modelled daily returns. The posterior
distributions of vy,, are tightly located on the left side of the value ¥, = 0 in case
of M, for i =2, 3, 4, 5 and 6, decisively confirming left asymmetry of p(yly,,,
0, n, M). The greatest intensification of conditional skewness, measured by
posterior mean of p(y,ly”, M), is obtained in model M,. In this case the posterior
expectation of asymmetry measure is equal to y, = -0.0216, with posterior
standard deviation equal about 0.0024. Also hidden truncation mechanism and
Beta distribution transformation with two free parameters support comparable
level of conditional left asymmetry. The inverse scale factors mechanisms (both,
M, and M;) and conditional density based on the Ferreira and Steel (2006)
construct generated posterior distributions of y,, localized very close to the value
% = 0 and also much more dispersed. Consequently, in case of models M,, M,



Table 2

Decimal logarithm of the marginal data density values, posterior probabilities of all competing specifications and posterior odds ratios
for M; fori=1, 2, 3, 4, 5, 6, 7, against M,

M, M; M, M; M, Mg M; M,
Azzalini Beta with 1 Beta with 2 Bernstein Fernandez Ferreira Hansen Student-t
(1985) parameter, parameters densites and Steel and Steel (1994) GARCH
Jones (2004) | Jones and Faddy (1998) (2006) (conditional
(2003) symmetry)
Symmetry p=0 =1 a=b=1 w; =1/3 n=1 7,=0 v5=0 Always
logp/¥IM) | -1558.50 -1558.78 -1558.41 ~1560.82 ~1559.45 -1560.45 1559.34 -1559.06
POMIYY, 0.3015 0.1582 0.3709 0.0014 0.0338 0.0338 0.0436 0.0830
i=0,..6
PMy®, 0.3288 0.1725 0.4045 0.0016 0.0369 0.0369 0.0475 X

i=1,..6

O1t



Table 3
Posterior means and standard deviation of tails and asymmetry parameters and posterior probabilities of left asymmetry of the density

pYivi1, 6, Ny M)
Azzalini Beta with 1 Beta with 2 Bernstein Ferndandez Ferreira Hansen Student-t
(1985) parameter, parameters densites and Steel and Steel (1994) GARCH
Jones (2004) | Jones and Faddy (1998) (2006) (conditional
(2003) symmetry)
P(M,-Iym) 0.3015 0.1582 0.3709 0.0014 0.0338 0.0076 0.0436 0.0830
tails v > 1 7.05 7.14 10.57 7.05 6.94 7.15 6.94 6.96
1.06 1.06 2.59 0.90 1.01 1.02 1.05 1.02
skewness, 7; g2: -0.1074 g3: 0.9480 a: 0.6665 wy: 0.3637 n: 1.0029 ¥74: ~0.0489 g5: 0.0030 —
0.0617 0.0288 0.1259 0.0324 0.0148 0.0238 0.0148
b: 0.7586 way: 0.3579
0.1384 0.0342
™ -0.0208 -0.0216 -0.0193 -0.0164 0.0038 8.086e-5 0.0030 —_—
symetry $%,=0 0.0029 0.0024 0.0067 0.0054 0.0080 0.0148
P(n< Oly('), M) 1.0000 1.0000 0.9960 0.3260 14.557e-5 0.4173 —
P (< Oy'%) 0.9677

It
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and M, the posterior probabilities of left asymmetry, P(y, < Oy, M), are very
small, making symmetry, as well as skewness to the right, not strongly rejected
by the data. Finally, on the basis of the Bayesian model pooling technique, we
obtained posterior probability of left asymmetry calculated considering the
whole class of specifications M,, i = 1, ..., 7. The modelled dataset clearly supports
left asymmetry, as P(y, < Oly) = 0.9677, but it also leaves some uncertainty
about the true intensification of this phenomenon. Posterior probability of
symmetry and right skewness of p(yly,,, 6, 7, M)) (equal to 0.0323) does not
totally reject those cases.

Our inverse probability integral approach to representation of the univariate
skewness enables to present the sources of possible conditional asymmetry
easily. In Table 4 we discuss the empirical differences between all competing
skewing mechanisms. We present the posterior means of the skewing distribu-
tions p(.In,) in all competing specifications M, i =1, ..., 7. The WIG excess returns
data contain specific information about the conditional asymmetry occured as
a source of different tail behavior of the density p(yly,,, 6, n, M). This may
explain such clear separation of conditionally skewed models with reasonable
data support and models strongly rejected in the view of the data. The subset
of specifications with very weak data support, namely models M,, M,, M, and
M,, show no conditional skewness effect, because the presented densities p(.In;)
are very close to the one corresponding to uniform distribution. Consequently,
two alternative inverse scale factors, Ferreira and Steel (2006) construct and
Bernstein densities do not yield a mechanism sensitive to the skewness repre-
sented by the WIG data. Three models with the greatest data support (built on
the basis of hidden truncation mechanism and Beta distribution transforma-

Table 4

Posterior means of skewing mechanisms p (.In;} in models M; i = 1, 2, 3, 4, 5, 7 and the skewing
mechanism obtained using Bayesian model pooling approach

Atz Ay M, : My
Azzalini (1985), Beta one parameter Beta two parameters : Ferndndez and Steel (1998),
LAY = 03288 P(Miv)=0.1725 Py = 04045 : PM) =0.0169
i o “
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tions) show substantial difference of p(.In;) from the case of conditional symme-
try. Since the values of p(.1n,) (for i = 2, 3 and 4) exhibit variability on the bounds
of the interval (0, 1), the considerable amount of skewness is located in the tails
of the conditional distribution of the excess returns ¥;- Quite similar tail behavior
can be observed in case of hidden truncation mechanism and Beta distribution
transformation with one free parameter. In model M, and M, the conditional
left asymmetry of the density p(yly,_,, 6, n, M) is forced by greater concentration
of probability mass in its left tail than in the right tail. In model with the greatest
data support, namely in M, based on the Beta distribution transformation with
two free parameters, the conditional skewness effect is also the result of
asymmetric tail monotonicity. However the distinction between left and right
tail of p(yly,.,, 6, n, M,) is definitely more subtle. In case of model M,, the
skewing mechanism p (.I7,) makes conditional distribution of excess returns
more leptokurtic, as the function p(.In,) has its extremes on the bounds of the
interval (0, 1). Since the global extreme value of p(yIn,) is reached for.y = 0, the
skewing mechanism in M, forces left asymmetry.

Finally in Table 5 we compare the total impact of the conditional skewness
effect on the tested relation between risk and return. According to our assump-
tions, the conditional expectation of the excess return is proportional to the
square root of the inverse precision A;. Since we parameterize the market risk by
a more general dispersion measure, than standard deviation, we report the
information about the relative risk aversion by the posterior characteristics of
the function « + E (z)), see (15). Initially we checked the strength of the relation
in model M,, which does not allow for conditional skewness. Given M,, E(z) = 0
and the whole information about relative risk aversion is reflected in parameter
o, see (13). Just like many other researchers, given M,, we obtain positive but
rather weak relation between expected excess return and risk. The posterior
probability P(a > 0IM,, y) equal about 0.92 leaves considerable level of
uncertainty about the true strength of tested relation. Consequently, model M,
does not confirm our hypothesis strongly. Imposing unreasonable (in the view
of the data) skewness into conditional distribution of excess returns also may
not strengthen our inference. In case of models with weak data support (inverse
scale factors M, and M,, Ferreira and Steel (2006) construct M,) the assumption
of asymmetry of the density p(yly_,, 6, 7, M) does not improve posterior
inference about the sign of a« + E(z). In case of M,, M, and M, posterior
probability of positive relationship is very close to the value generated within
M,. Only in case of the skewing mechanisms with the greatest data support,
namely Beta transformation with two parameters and hidden truncation, the
WIG excess returns yield decisive support of the positive sign of the relative risk
aversion coefficient. In case of model M,, the posterior probability of positive
sign of & + E(z)) is greater than 0.99, leaving no doubt about the significance of
the relationship between risk and return postulated by Merton (1973). Hence,



Posterior analysis of the impact of the conditional skewness assumption on the relation between risk and return

Table 5

M, M; M, M; M; Mg M; M,

Azzalini Beta with 1 Beta with 2 Bernstein Fernandez Ferreira Hansen Student-t

(1985) parameter, parameters densites and Steel and Steel (1994) GARCH
Jones (2004) | Jones and Faddy (1998) (2006) (conditional

(2003) symmetry)
o + E(z) 0.2567 0.1440 0.2148 0.2085 0.0469 0.0489 0.441 0.0483
0.1162 0.0912 0.0852 0.0933 0.0349 0.0338 0.0316 0.0337
P(a + E(z;) >0!M,~,y(')) 0.9894 0.9528 0.9972 0.9893 0.9102 0.9230 09171 0.9201

P(a + E(z)) > Oly') 0.9777

149!
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it is possible to confirm positive sing of & + E(z) only by imposing specific
skewing mechanism into conditional distribution of excess returns. Beta distri-
bution transformation with two free parameters is able to detect additional
source of information about risk premium in the WIG dataset. Also, hidden
truncation mechanism and Bernstein density transformation strongly confirm
positive sing of the risk aversion coefficient, as posterior probability P(e + E(z))
> OIM;,, yY) is greater than 0.98 for i = 2 and S.

5. CONCLUDING REMARKS

In this paper we presented the results of Bayesian estimation of the impact of
the conditional skewness assumption on the strength of the relationship
between risk and return. Initially, on the basis of the Intertemporal CAPM
model, proposed by Merton (1973), we built the GARCH-In-Mean sampling
model, suitable in analysing such relationship. Our approach, which fully relates
to the model proposed by Osiewalski and Pipieri (2000), treats the skewness of
the conditional distribution of excess returns as an alternative source of
information about risk aversion. Thus pure statistical feature of the sampling
model was equipped with economic interpretation.

Based on the daily excess returns of WIG index we checked the total impact
of conditional skewness assumption on the relation between risk and return.
Posterior inference about skewing mechanisms showed positive and decisively
significant value of the coefficient of the relative risk aversion once an appro-
priate, specific skewing mechanism was imposed in conditional Student-t
distribution. The greatest data support, and also very strong support of the
relation postulated by Merton (1973), received skewness obtained by Beta
distribution transformation with two free parameters; see Jones and Faddy
(2003). Also strong confirmation of positive relative risk aversion coefficient was
generated by hidden truncation mechanism, proposed by Azzalini (1985) and
Bernstein density transformation. Many other skewing mechanisms considered
in the paper were strongly rejected by the WIG dataset. Consequently, in many
cases we observed no impact of conditional asymmetry on the tested relation.
The WIG excess return contained specific information about conditional skew-
ness, which was able to detect only by models with the greatest data support.
Thus, in our empirical example it was possible to identify asymmetry of the
conditional distribution as an additional source of information concerning risk
premium only in case of specific, more flexible skewing mechanisms, than
previously considered in the literature.



116

STRESZCZENIE

Mateusz Pipieri. Wykorzystanie warunkowej asymetrii w badaniu zaleznosci pomiedzy oczekiwang
stopa zwrotu a poziomem ryzyka. Analiza bayesowska dla danych WIG. Folia Occonomica
Cracoviensia 2007, 48: 95-117.

Zasadniczym celem artykulu jest zastosowanie wnioskowania bayesowskiego w badaniu relacji
pomiedzy oczekiwang stopa zwrotu a poziomem ryzyka na Gieldzie Papieréw Wartosciowych
w Warszawie. Na podstawie migdzyokresowego modelu CAPM (ang. Intertemporal-CAPM),
zaproponowanego przez Mertona (1973), zbudowano ogélny model prébkowy w ramach
ktérego jest mozliwe testowanie omawianej relacji. W rozwazanym modelu statystycznym
Zrédlem zaleznosci pomigdzy oczekiwanym zwrotem a poziomem ryzyka jest asymetria
rozkladu warunkowego stép zmian. Propozycja ta wykorzystuje koncepcje GARCH-In-Mean
Osiewalskiego i Pipienia (2000) oraz dostarcza formalnej, ekonomicznej interpretacji skosnosci
wystepujacej w modelu prébkowym.

W artykule rozwazono wiele konkurencyjnych specyfikacji dopuszczajacych warunkowa
asymetri¢. W szczeg6lnosci zastosowano mechanizm ukrytego uciecia, alternatywne skalowa-
nia wokét modalnej, transformacje rozkladem Beta, gestosci Bersteina oraz metode zapropo-
nowan¢ przez Ferreire i Steela (2006).

Na podstawie danych dotyczacych kwotowari indeksu WIG dokonano analizy wplywu
wprowadzenia do modelu warunkowej asymetrii stép zmian na postulowana relacje pomiedzy
oczekiwana stopa zmian a poziomem ryzyka. Wyniki bayesowskiego poréwnania modeli, jak
réwniez analiza a posteriori parametréw skosnosci potwierdzily w sposéb zdecydowany zato-
zenia teorii Mertona (1973). Uzyskano silnie istotna i dodatnia zalezno$¢ pomiedzy stopa
zwrotu indeksu WIG i zmienno$cia. Najwyzsza warto$¢ prawdopodobieristwa a posteriori
uzyskal model, w ktérym efekt asymetrii jest rezultatem zastosowania transformacji rozktadem
Beta z dwoma swobodnymi parametrami.
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