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In the paper two particular Markov Switching Stochastic Volatility models (MSSV) are under
consideration: one with a switching intercept in the log-volatility equation, and the other —
with a regime-dependent autoregression parameter. While the former one is fairly common
in the literature (as a tool of taking account for regimes of different mean volatility level),
the latter has not been paid almost any attention so far. We note the fact, that state-varying
mean volatility may arise from switches in the intercept or in the autoregression parameter.
Hence, we aim to compare these two models in respect of goodness of fit to the data from
the Polish financial market, employing Bayesian techniques of estimation and model compa-
rison. Clear evidence of structural shifts in the volatility pattern is found. Two different re-
gimes of the economy are characterized in terms of the mean volatility level and the varian-
ce of volatility.
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1. INTRODUCTION

Recent years have witnessed a rapid increase in the interest in modelling time-
varying volatility of financial time series. Among the most popular tools de-
vised to capture some of its common features have been two parametric model
families: the ARCH processes, introduced by Engle (1982) (along with their
numerous extensions starting with GARCH process of Bollerslev, 1986), and
the stochastic volatility (SV) processes, of whose the main concept has been
presented by Clark (1973). Although in formally different ways, in both of the
above conditional variance equation is defined explicitly.

The underlying assumption of these constructions is homogeneity of the
modelled time series, which means exclusion of potential structural breaks
occurring in the analyzed period. It allows one to presume that the parameters
of interest remain constant over time. However, volatility clustering, a com-
mon phenomenon observed in stock returns series, may question this belief.
It is so due to some heuristic reasoning that less volatile periods alternating
with these of higher uncertainty may somehow correspond with structural
breaks occurring in the data. In view of potential heterogeneity of a certain
time series, models such as GARCH or SV are of too restrictive nature (Hwang
et al., 2004). Not being able to capture discrete shifts of states of the economy
may be the cause for these models to yield somewhat misleading results. For
instance, Granger and Hyung (1999) and Diebold and Inoue (2001) suggest
that structural breaks in the mean of volatility may be a source of volatility
persistence. It follows that a proper model should include an explicit mecha-
nism capable of accounting for possible regime changes. One of the most popular
in this respect is Markov switching (MS) mechanism introduced by Hamilton
(1989). What he suggested is an autoregressive process whose parameters are
subject to changes over time according to a latent homogeneous Markov chain.
Since then many studies have been undertaken to employ the idea of MS into
volatility models, mainly those of the GARCH family (see Bauwens et al., 2006,
among many).

The aim of the paper is Bayesian estimation and comparison (in terms of
goodness of fit to the data) three SV specifications: a non-switching basic sto-
chastic volatility (BSV) model and two Markov Switching SV (MSSV) models
(one with a regime-changing intercept and the other with a switching autore-
gression parameter in the volatility equation). The dataset comprises daily
observations on the 1-month Warsaw Interbank Offered Rate (WIBOR1M)
interest rates over the period from April 17, 2000 to April 7, 2008. Incidental
to the analysis of the regime-switching constructions is a search for potential
structural shifts occurring in the series and — if any are found — character-
ization of the identified states of the economy.

There are several reasons behind our research. Firstly, employing non-
switching models in view of potential structural breaks in the time series may
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lead to a model misspecification error. In this regard, switching specifications,
like the MSSV processes, may be of value as they account for discrete shifts in
the parameters. Secondly, we note that abrupt changes in the mean volatility
level, which is the reason widely cited in the literature for employing the MSSV
structures, may be attributed not only to the switching intercept but, alterna-
tively, to the regime-changing autoregression parameter in the volatility equa-
tion. Finally, neither the issue above nor the MSSV models with a switching
elasticity of volatility? are tackled in the literature known to the author3

As regards the current state of the literature on the MSSV models, in
a predominant part of the studies only two-state specifications with a switch-
ing intercept are concerned (Smith, 2000; Kalimipali and Susmel, 2001; Casarin,
2003; Shibata and Watanabe, 2005; Carvalho and Lopes, 2006). Three-state
models are analyzed in So et al. (1998) and Hwang et al. (2003, 2004). In terms
of the estimation tools the Bayesian approach prevails, with use of either stan-
dard MCMC procedures (the Gibbs sampler; So et al., 1998; Kalimipali and
Susmel, 2001, Shibata and Watanabe, 2005) or more recent (auxiliary) particle
filters (Casarin, 2003; Carvalho and Lopes, 2006). Some of the models feature
additional elements such as term structure (Smith, 2000; Kalimipali and Sus-
mel, 2001) and heavy-tailed distributions of the noise term in the observable
process (Casarin, 2003).

We conduct the analysis in the Bayesian setting, which allows fully prob-
abilistic inference on all the unknown quantities of the model as well as well-
founded model comparison. As opposed to the ‘classical’ (i.e. non-Bayesian)
tools, Bayesian methodology in the context of switching models (or, more
generally, mixture models) is found even more appealing. The latter stems
from the possibility of inference on the latent regimes unconditionally upon
the parameter estimates (see Gartner, 2007).

The remainder of the paper is organized as follows. In Section 2 we present
the models under consideration and selected regime characteristics, of which
use is made in the further parts. Bayesian estimation of the models and their
comparison are briefly discussed in Section 3, followed by an empirical illus-
tration of the presented methodology in Section 4. Finally, Section 5 concludes.

2 “Elasticity of volatility” is the term used by Smith (2000) with reference to the autoregression
parameter, ¢, in the log-volatility equation of a SV model given as: Inh, = 4 + plnh,; + on,. Assu-
ming 77, ~ iiD(0, 1) (i.e. each 7, is an independent and identically distributed random variable with
zero mean and unit variance) the third parameter, g, is a standard deviation of the innovation term
o1, and hence referred to as ‘volatility of volatility”.

? The only works in which the autoregression parameter is allowed to switch over the regimes
are of Hwang et al. (2003, 2004). However, not only the estimation approach employed in these
studies (Quasi-ML), but also the specification of the log-volatility equation is different than in our
work.
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2. SELECTED MARKOV SWITCHING SV (MSSV) MODELS

In this part the basics of selected MSSV processes are presented. We start with
the following definition of a general Markov Switching SV process.

Definition 1

A stochastic process4 {y;, te N U{0}} follows a two-state Markov Switching
Stochastic Volatility (MSSV) process if and only if for each te N U{0} the fol-
lowing assumptions hold:

Yr =€l ; (1)
Inh; = ug, + @, Inhy_y +0g 15 (2)

£

{[Tlt J te Nu {0}} ~ llN(z) (O(ZXI)/ [2);

t

{5;, te N U{0}} — a homogenous, ergodic and irreducible two-state Mar-
kov chain;

SreQ=1{12},

» . 2 . -
Pr(S; = 1Sy =i)=py, p;j €0, 1), _zlp,.j =1,4j=1,2
1=

The observable variable, y,, is defined as a product of a Gaussian white
noise and conditional standard deviation.?> Equation 2 defines the log-volatil-
ity which evolves over time according to a simple switching autoregressive
process. Since all of the parameters in the latter feature regime-changing prop-
erty, the definition may be viewed quite general, although further extensions
are possible (a heavy-tailed distribution for ¢, can be considered, for instance,
as in Casarin, 2003). The switching mechanism, represented by the family of
discrete random variables §,’s, is assumed to follow a simple two-state Markov
chain, in accordance with the idea proposed by Hamilton (1989). For the sake
of our study, ergodicity and irreducibility of the chain are assumed by restrict-
ing the transition probabilities, p;, to lay strictly within the unit interval.

One should note, that a basic stochastic volatility process (BSV), with the
log-volatility equation defined as:

Inh, = u + @lnhyy + on,,

* By N we denote the set of positive integers.

5 It is straightforward to show that — conditionally upon a cralgebra with respect to which #, is
measurable — the latter constitutes conditional variance of the process {y,}, i.e: Var(y,|F _,, 7, 5) =
h,, where F, | is the past information about the process {li;,t € N U {0}} up to the moment ¢-1.
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may be viewed as a particular case of the general MSSV process once i, = i,
¢, = ¢, and o, = g, hold. However, the transition probabilities, P remain then
unidentified.

In our work two special cases of the general MSSV process are of particu-
lar interest: the one with a switching intercept and the other — with a regime-
dependent autoregression parameter. A concise discussion of both follows.®

21. MSSV model with a switching intercept, MSSV(u)

In this case Equation 2 collapses to:

Hp+elnh g +on, & S5 =1
Uy +@Inh 1 +0on, o S =2

Inhy = ps +olnhy_y +on, = { 3
For the sake of identifiability of the model we reparametrize the switching
parameter as (see So et al., 1998):

'US, =nt 7ZI(S¢ =2),

where % € R, %, < 0 and I(.) denotes the indicator function which takes one if
the condition in the parentheses is satisfied and zero otherwise. Such a repre-
sentation of the switching intercept results in inequality x, > u,. It may be
shown that the latter is equivalent to predetermining states ‘1’ and "2’ as ones
of high and low mean log-volatility level, respectively, that is:

Uy >, o E(lnh 1S, =1)>E(nh 1S, =2).

For the model in question we shall also assume covariance stationarity of
the log-volatility process following Equation 3, for which it is necessary and
sufficient” to guarantee that gl < 1.

22. MSSV model with a switching autoregression
parameter, MSSV (¢

In our study we note that discrete shifts in the mean volatility level may result
from not only a switching intercept, but — alternatively — a regime-changing
autoregression parameter. Hence, we consider a MSSV model with Equation
2 assuming the form:

Ink, = 4 + @gInhy, + o7, (4)

¢ For a comprehensive work on non-switching SV models we refer to Pajor (2003).
7 General results on second-order and strict stationarity of switching vector autoregression
processes may be found in Francq and Zakoian (2001).
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Fig. 1. Simulated path of a MSSV(¢) process (u = -2.5; ¢, = 0.2; p, = 0.5; 07 = 0.6132; p,, = 0.98;
P,, = 0.95) and the corresponding log-volatility and regime-switching processes

For the identifiability reasons we shall impose the inequality ¢, < ¢,. Once
formulas for conditional expectations E(Ink, 1S, = 1) (i = 1, 2) are available (see
the following subsection), it is easily shown that:

p<0 = [py<9, e Elnk 1S, =1)>E(nk 1S, =2)]
and
>0 = [p<p, & E(nk 1S, =1)<E(nk IS, =2)],

which indicates different mean volatility levels in each of the regimes.
Further, we assume covariance stationarity of the log-volatility process
following Equation 4. The relevant (necessary and sulfficient) condition is giv-
en by the set of inequalities:®
Ry <1
{RZ < 2,

2 2 2
Ry = p11@ + o3 +(1—p1y —pan)ote3,

where:

2 2
Ry =pnoi +pne;-

8 The condition is also valid for the general case, in which all the three volatility parameters are
allowed regime shifts (see Francq and Zakoian, 2001). One should note that the condition is some-
what contrary to an initial ‘intuition’ according to which it should be ‘enough’ to assume that
lgl <1 and |@| < 1. The latter constitutes neither a necessary nor a sufficient condition for
second-order stationarity of a two-state switching first-order autoregression (ibid.).
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Figure 1 depicts a simulated path of a certain MSSV(g) process and ‘the
corresponding regime-switching and (stationary) log-volatility processes. The
latter displays evident shifts in the mean level (according to the switching
mechanism), which manifest themselves in the form of volatility clustering.

'23. Selected regime characteristics

While allowing different states of the economy, it is natural to characterize the
regimes in some systematic way. In our work we do so by calculating selected
regime-specific characteristics both of the log-volatility process and the switching
mechanism as well, including: .

— state-conditional mean log-volatlhty level N

El = E(lnht lSt = 1) = :ul(l (p2p22) +.u2(Pl(1 Pll)
1010 -(P2P22(1 1) —@e1p11(1- ‘Pz)

E?_EE(Inh,‘lSt ~2) = — 12 (1= @1pry) + 195 (1 - Pzz)
1-01907 —~@app(1- 1) - <P1P11(1 <P2)

— state- condmonal variance of the log- volatlhty process

V, = Var(lnk, 1§y =i) = E(n? by 15, =i)-E} fori=1,2,

where: - . . .
N o9 2
E(1n2 B1s, = 1) d1(1 ‘Pszz) + dz‘ﬁl A-pn)
1-ofpy "fP2P22 +fP1 3 (-1 *Pu +P22)
E(lnz By 1S, = 2)= (-0 P11)+d1<02 ) ,
S 1-0fp11 = 03P + 0103 (<14 p1y +p2)
and '

di = uf +2u0,E(nh,_ 1S, =i)+o?  fori=1,2,

E(lﬂht_’l‘ St = l) = ZIP],E(lnhtl S[ = ]) i
B " : ]=
- with p; = Pr(S;_; =i 1S, =) being the inverse transition probabilities;'®

i Fltst- and second-order state-conditional moments of the log-volatility process have been
. obtained for the general case (that is the one in which-all three parameters are regime-changing)
~:under-assumption of covariance statlonarlty of that process and based on’ the results of Nielsen
and Olesen (2000). ‘
® In the case of a two-state Markov cham the inverse transition probablhtxes defined as
p}; =Pr(S,_ =ilS, = j) are easily shown to equal the ordinary transition probab111t1es, p, =Pr(S, =
NS = ).
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— ergodlc probab1ht1es

m —Pr(St =1)= _1_1_’_22___
2-pn —P22

7y =Pr(S, —2)—1——7r1,

— expected duration!? of state ‘i’ (once the system has switched to that state;
see Hamilton, 1989): ' :

Dur; = fori=1, 2.

Pii

3. BAYESIAN ESTIMATION AND COMPARISON
OF THE MSSV MODELS”

Estimation: of the MSSV models is not trivial: Handling the maximum likeli-
hood procedure is riddled with serious numerical obstacles due to the pres-
ence of (as much as) two latent processes underlying the observable process:
the conditional volatilities, h/s, and the states, S,'s. In our work we resort to
Bayesian methodology, Wthh prevails in the MSSV literature.’* Although new
methods — based on the (auxiliary) particle filters — have been developed of
recent,’® we employ the already ‘classical’ MCMC procedures: the Gibbs sam-
pler and the Metropohs-Hastmgs algorlthm to simulate from the joint poste-
rior distribution of all the unknown quantities of the model.

Let y = (yy, Y5 - yp)' denote the modelled time series, vector h = (h,
h,, ... T) be:the series of the latent conditional volatilities and vector
S = (Sl, or wer Sq) — the unobserved Markov chain. We define the parameter
vector as 0= (,5 02, Py1 Pr) With 02, Pu and p,, being the parameters common
to both MSSV models, and B comprising the model-specific parameters:

={(Y1,72,<p) for MSSV(u)
(1,01,0,) for MSSV(p)’

Further, we employ the data-augmentation technique introduced by Tan-
ner and Wong (1987), within which all the unknown quantities of the model

" Ergodic probabilities calculated for an ergodic Markov chain tell us approximately for how
long (in-terms of a part of the analyzed time series) the chain remains in each of its states. In the
study we assume that p; € (0,1) for i = 1, 2, which ensures ergodicity of the switching process.

12 Expected duration of a certain regime is calculated conditionally upon being in that state.

3 In the paper we discuss only the estimation of the switching SV models. For a detailed
description of the Bayesian estimation of simple SV constructions we refer to Pajor (2003).

¥ For the relevant references see Section 1.

1> Ditto.
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are treated as random variables subject to estimation and taking'values in the
common space:

—(9’ K, S’)eQ @xHxQ

where e @c RS, h eHcRT S EQTandQ {1, }
The joint posterior distribution of @ is factorized as:16-

p(6,1,S13) < p(y | k) p(h1S, e)p(Sl@)p(@) SR

which reveals its hierarchical structure. Individual components of (5) are pre-
sented in the Append1x Here, we focus on the | prior structure of the param-
eters, for (almost) all of Wthh mutual mdependence is assumed

(6= {p(ﬁ)p(c )P(P)P(P) for MSSV(u),
p(B lp“,pzz)p(c )p(p..)p(pn) for MSSV (9). -

Condttlonmg on the transmon probabilities in p(ﬁl Pi 2%} for the model
with a switching autoregression parameter stems from.imposing prior restric-
tions of covariance statlonanty of the underlymg log-volatlhty process (see
Section 2.2).

-In the study we choose fa1r1y dlffuse priors, 1ett1ng the poster1or results
arise mainly from the information contained in the data: More spec1f1cally, we
" have: :
‘ 1. prior distributions for the parameters common to both MSSV models 117

- p(dz) = fig(6®1vy, vy), v, =1, v, = 200;
;) = felp;la, b),a,=b,=1,for i =1,2;

~where fy(p;la, b) denotes the density function of a Beta-distributed random

variable, Pii with the shape and scale parameters equal g, and bz, respectively;

. 2. prior distribution for g: - o : ,
— for the MSS5V(x) model:

PB) = LB By A7, < OI(1 9l < 1), By = 0, Ay = 0,01 - I,

where f k)(,B | By Ap™) denotes the density function of a normally distributed
k-varxate random variable, B, with the mean vector and the precision matrix
equal g, and A, respectively;

' % The analysis is conducted conditionally on h, = 1, dependence on which is omitted in the
notation.
7 We parametrize the density of the inverse gamma distribution as:

v 1
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—for the MSSV(p) model:. .
p(B1pyy, Pr) = f (3)(/3!,60, A;DIR, < O)I(R, < 0), By = 05, Ag = 001 - I

As regards prior distributions for the parameters of the BSV model we
follow the structure employed in Pa]or (2003) namely

—p(a) —fxc(G lvl,v) 7’1 =10,= 200;
—pl o) = fN (ﬂquO(z,d), (gl < 1), Ay = 001 - I

‘ The pnor structure presented above prov1des very convement (in terms of
the ‘sampling method) conditional posterior distributions of the model param-
eters.!® The latter are employed to construct a hybrid chain within the MCMC
procedure, through which a N-sized sample from the joint posterior distribu- 3

tion is obtained, {(D“”}_M L

sampling algorithm, of Wthh the first M cycles are discarded, and @@ signi-
fies the otitcome on @ from the g-th step. Once the algorithm is complete, it
is- straightforward to obtain also a sample of any measurable function of ‘@, -
such'as regime characteristics, in particular. ' : : 3
- In order to allow Bayesian model comparison, the marginal likelihood for‘
each’of the estimated models needs to be evaluated. In our work we resort to
the procedure-introduced by Newton and.Raftery (1994), in which the quan-
tity of interest is estimated as: ,

where g denotes the number of the cycle of the

: ‘ v
M+N

T L W
9=M+1p(y | oy, M;)

where "(y | M)) is the estimator of the marginal likelihood in the i-th model, M.

Desplte its lamentable numerical instability, the method proved satisfactory in

our applications. Finally, to compare the models pair-wise use is made of Bayes

factors, B defined as:

o Py M)
g ply |Mj)

18 Full details on the posterior structure of all the estimated quantities are found in the Ap-
pendix.
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4. EMPIRICAL STUDY
~4.1. Data de‘s_'eripti‘onv

The methodology presented above is 1llustrated with an’ empirical study in
which data from the Polish financial ‘market is analyzed. More spec1f1cally, we
consider a series of daily quotations of the 1-month Warsaw Interbank’ Offered
Rate (WIBOR1M) interest rates over the period from April 17, 2000 to April
7, 2008 (which makes the total of 2002 observations). The series is plotted in
Figure 2.

WIBQRjM vimeres‘t’ rates (2000.04.17-2008.04.07) :
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Fig. 2. The series of WIBOR1M interest rates, w,

. We calculate the daily log-returns, r,’s, on the WIBORIM interest rates,
defined as:

= 100In(w,/w, ,),

where w, denotes the pr1ce of | the instrument at time t The series of r/s is
presented in-Figure 3."

Log-returns on WILBOR1M (2000.04.18-2008.04. 07)
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Fig. 3. Daily log-returns, r, on the WIBORIM (April 18, 2000-April 7; 2008)
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Further, we apply a simple linear filter — a first-order autoregressive model
— to the data as to account for possibly. non-zero conditional mean of the data
generating process.” Henceforth, the analysis is conducted for the resulting
series of. AR(l)-remdualszo (see Fig. 4), denoted as y, with t = 1, 2, ..., T = 2000.
The latter. dlsplay features commonly found in financial data, 1nclud1ng vola-
t1hty clustermg, hlgh value of the emplrlcal kurtosis coeff1c1ent (see Tab..1), no

AR(1) reSIduals for WILBOR1M (2000 04 19—2008 04. 07)

ST
6 -
Ll S
; | ) hll 1 ) I 1 |
) "AJII:III‘% Yy
A ik
2 ] A ! '
-4 T T
-6
-8
-10 T T R e e A S e e e o L A e e e e e e e e e e
233 =g 3 2§48 2258535 5 {585 8=
'3 8 53 86 &8 285 - 8.8 ¢ 385 888§ 8 ¢ 8
8§ 8 5 85 8 8§ g8 88 3 3 3 8 8 8 8 8 5 5 5 8
& &§8 § &« 8 8§ § 8 § 8 {8 8 8 R R R &8 8 8 R R =% 8
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Fi

DescfiptiVe‘statistics for AR(1)-residuals for WIBORIM

g. 4. The AR(1)-residuals for the daily log-returns on the WIBORIM

Table 1

Min Max Mean |‘Stand. deviation

Asymmetry Kurtosis ARCH(2) effect

2_
72629 | 65844 | 0.0000 | © 0.8394 04339 | 185818 | IR’ =177.1391
{ (p-value = 0.0000)
14 -
12
1.0 -
08 :
0.6 .
04 /_” 17273747876 778910 11 121314 15
0.2 lag
0 e ez ACHy) e ACF(yA2)
8 8 u°'> 8 u'°> 8 u'°> 8 u'°> uo> 8 uoa v = t2 SIA EIT e « = -2 5td €IT
5885 805 dE N5
'T (? ' T of‘:» <\‘| - O -~ &N m v ©

Fxg 5. Empmcal distribution of the series {yt, t= 1, 2

used

iy T} with fitted nofmal density (left)

and the autocorrelation function of the series and its square (right)

15 Estimation of the AR(1) model for the series of the log-retums, 7/s, yields the results:

r, = -0.0464 + 0.15377,  + ”t
(0.0188) -

™ An altematlve approach is to simulate the parameters of the conditional mean modelled
w1th an AR(l) process from their conditional posterior distributions. However, we expect that au-
tocorrelations in the log-returns have little 1mpact on the volatility and, hence, adopt the method

by So et al., 1998.

* (0.0221)
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significant autocorrelations in the original series, yet strong auto-dependen—
cies in the squared series (see Fig. 5). Additionally, left asymmetry in the
empirical distribution of the re51duals is found (see ‘Tab. 1).

42. Results for the Basic SV 'model-

For the estlmatlon of the BSV model we employed the Glbbs sampler com-
bined with the Metropolis-Hastings step for sampling the latent conditional
volatilities, h,’s, as done in Pajor (2003). The first M = 500, 000 burnt-m itera-
tions are dlscarded and the subsequent N = 1,500,000 iterations are regarded
as a simulated sample from the joint posterior density.

Table 2 contains posterior means and standard deviations of the model
parameters. One notes the posterior mean of the autoregression parameter, ¢,
being fairly close to unit. It is a common finding in the SV literature (see Pajor,
2003, among many), indicating evident persistence in the conditional volatility
process. Despite prior independency between the parameters we observe strong
posterior correlations (see Tab. 3). The latter may arise as a result of ’stabili-
zation’ of the unconditional characterlstlcs of the Volatrhty process, such as
mean and variance. :

o ‘ Table 2
Posterior means and standard deviations (in parentheses) of the BSV parameters
u o o’
-0.3384 0.8269 1.1053
(0.0508) - (0.0215) (0.1285)
Table 3

Posterior correlation matrix of the BSV parameters

M H 4 . ,‘72!,;-‘:'

U 1 | 08753 | -065%0 -
10 | =07185:

o? | T

“In Frgure 6 the margmal pr1or and posterror drstrrbutrons of the BSV
parameters along with the plots of their ergodic means (against the number of
cycles) are depicted. The results of posterior densities being of regular shapes
and fast convergence of the ergodic means convergence to their posterior
counterparts remain consistent with Pajor (2003).
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43. Results for the MSSV (g) model

To estimate the model we employ the sampling algorithm presented in the Ap-
pendix.! The first M = 2,000,000 burn-in iterations are discarded and the sub-
sequent N = 1,500,000 iterations constitute a simulated sample from the joint
posterior density: :

As it can be gathered from the posterlor means of the transition probabil-
ities located very close to unit (see Tab. 4), the switching mechanism manifests
strong persistence. Once a certain state is achieved, little is the probability of
a switch to the alternative regime. Furthermore, one notes significantly neg-
ative posterior mean of 7,, which provides compelling evidence of discrete
shifts in the value of the intercept. As compared with the results for the BSV
model, the mean posterior of the elasticity of volatility is ' markedly lower. It
is the most common-finding: cited in the MSSV literature, where it is argued
that structural shifts unaccounted for by standard:SV ‘models may:imply spu-
riously high persistence in the volatility process. However, we would not jump
to such conclusions, unless the true autocorrelation functions of the log-vola-
tility process in the BSV and MSSV. model are surveyed.? One may presume,
that the very same ‘spuriously’ high volatility persistence implied by the non-
switching SV specification may be captured by the switching counterpart, yet
in a different manner (resultmg, for instance, in the close-to-unit mean poste--
rior probabilities p;, i = 1, 2). The issue mer1ts further research.

Table 4
Posterior means and standard deviations of the parameters of model M,
P Do "o e - o .. o?
0.9960 0.9964 -0.2753 -0.7292 0.6658 -+ 1.3594
(0.0027) | (0.0026) | (0.0647) (0.1051) (0.0360) | (0.1437)

A According to the posterior correlation matrix of the parameters (see Tab. 5),
- prior assumption of their mutual independence seems to be overruled by the

data. In our belief, the non-zero posterior correlation coefficients may arise

‘ __from ‘stabilization” of the regime characteristics as well as the uncond1t10nal
,moments of the log-volat1l1ty process. :

RS We note that the minimum acceptance rate while sampling ks via the M-H algorlthm
 amounted to approximately 60%, which is found much satisfying.

2 For the purpose of comparison of volatility persistence implied by the BSV and both MSSV
models, we averaged posterior empirical autocorrelation function (ACF) coefficients (lags: 1.to 15)
 for the sampled series of Ink,’s . The results appear not to reject the individual hypotheses of equal

mean ACF coefficients across different models, therefore advocating the conjecture to follow in the

. main text.
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SRR : o Table 5

Posterior correlation matrix of the parameters of model M,

Tt
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.- Marginal posterior densities-of. the transition probabilities p, concentrate
tightly on the left of unit (see'Fig. 7), which indicates that the analyzed dataset
is very 1nformat1ve with regard to the sw1tch1ng mechanism. Posterlor dlstn-
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Fig. 7. Marginal prior (solid line) and posterior distributions of the transition probabxhtles
in model M,
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butions of the remaining parameters are clearly unimodal and cluster (with
slight asymmetries) around their means (see Fig. 8). Prior covariance station-
arity of the log-volatility process is not rejected by the data, as the posterior

density of the autoregression parameter, @, clusters away on the left of unit.
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F1g 8. Marginal prior (solid line) and posterlor distributions of the log-volatlhty parameters
m model M,

A somewhat unstable behaviour of the ergodic means of the parameters
- (except for the transition probablhtles) may raise concerns as regards conver-
“gence of the MCMC procedure (see Fig. 9). However, one should note rather
negligible magnitude of the visible fluctuations.
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44. Results for the MSSV(¢) model

127

As in the previous case, the quantltles of interest are sampled within the MCMC
procedure presented in the Appendix.? The first M = 2,000,000 burn-in iter-
ations are discarded and the subsequent N = 1,500,000 iterations constitute

a simulated sample from the joint posterior density.

As far as the switching mechanism is concerned, similar (to the previous
model) results are obtained: Posterior means .of the probabilities p,, are very

‘ Table 6
Posterior means and standard deviations of the parameters Qf model M,
Pn P22 M (4 (23 o
. 09939 0.9961 04511 0.5465 0.8201 1.2485
(0.0046) (0.0026) (0.0642) (0.0869) (0.0233) (0.1375) .

close to unit, implying high persistence in the latent Markov chain (see Tab. 6).
Moreover, the posterior means of the switching parameter differ substantially
across the two regimes. It follows that switches between two genuinely- dis-

Table 7

Posterior correlation matrix of the parameters of model M,

Ms pn p22 M A 7% s

pu - 1 - 0.4241 ~0.0631- - | 03608 | 01015+ | .0.0225
P2 1 0.0970 00765 | 0.0071" .| =0.0020
'y 1 04967 . | .08355: | 06405 .
o 1 705678 | -03328" .
o 1| -06360 -
o 1

- ® The minimum acceptance rate while sampling 4,'s via the M-H algorithm, amounted to
approximately 60%.
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Flg 10. Margmal prior (blue solid line) and posterior distributions of the transition probabilities
in model M,

tinct states of the economy do occur in the modelled time series. Again, the
posterior correlations between the parameters appear to reject their prior
independence, a reason for which is beheved to be the same as in the model
with a regime-changing intercept.

‘Marginal posterior densities of the transition probabilities: resemble much
'those obtained for the MSSV() model. Apart from a strong left asymmetry of
parameter @,, no’ other irregularities are found in the posterior distributions
of the parameters (see Fig. 11).
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The behaviour of the ergodic means seems to raise no concerns with re-
gard to the convergence of the MCMC algorithm (see Fig. 12).

To analyze the validity of the prior constraints for second-order station-
arity. of the log-volatility process is a more demanding task than in the previ-
‘ous cases. Therefore, we present Figure 13, plotting the values of R, and R,,
which are required to satisfy the inequalities: R; < 1 and R, <2 (see Sectlon 2 2)
We note that only the dark area in the figure represents the set of pairs (R,,
R,) that guarantee stationarity of the log-volatility process.?* Within the region
'two-dlmens1ona1 contours of the posterior density of random vector (R, R,)
are plotted. Desplte the location of the latter close to the stationarity border,
the data appears rather not to reject the prior stationarity restrictions.

% The stationarity region has been obtained by simulation and therefore displays slight inac-
curacies.
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45. Regime wcharacteri'stics.

Both regime-switching SV specifications imply existence of two distinguish-
able states of the economy. It is evident even more in Flgure 14, depicting
averaged posterlor probab111t1es25 Pr(S =11ly) in each of the two models along
with the modelled time series and the averaged postenor log-volat111t1es, Inh,’s,
~ extracted from model M, 2 Unit-close values of the 1-state mean probablhtles
' clearly correspond with the period. of relatively hlgher volat111ty of the daily
WIBORIM interest rates (from about Apr11 2001 to September 2004) Most of
the't remaining part of the sample perlod is definitely labelled as state ‘2. There
is a rather short sub-period, however, lasting from March, 2005 to September
‘ 2005 that cannot be ascrlbed to any of the regimes unamblguously It may the

5 Mea‘n,vposterior probabilities of state gy have been obtained as:

Px(S, —lly)—NZI(S(")—l) t=1,2 .., T

g=M+1 |

... % The series of the averaged posterior.Ink/’s only from model M, is presented as it coincides
+ . quite much with the ones obtained from other ‘spec1f1cat10ns, ie. M, and M,
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B

case that yet another state (ie. the one representing a medlum volatility level)\
should be introduced to the model, yielding ‘a-three-state MSSV specification.
Posterior means of the regime characteristics (see Tab. 8) indicate that the

models differentiate the two regimes in terms of either only the mean log-

volatility level (model M,) or, additionally, in terms of the state-dependent

variances of the log-volatility process (model M;), with the low-volatility state

"2’ featuring relatively increased ‘variability of Volatlhty One should note that

what characterizes the expected durations of each of the states is consxderable

d1sper51on (in’ terms of the standard dev1at10n) in their posterior densities
featuring very long and heavy rlght tails (see Fig. 16). On average, the expect- -
ed time of the Markov chain remaining in a particular state (once it has been
achleved) dlffers from its posterlor mean by about 805 to 5251 weekdays (see
Tab. 8). As regards the ergodlc probablhtles, it is noticed that their posterior
densities, though of a regular shape, are fairly diffused over the unit interval,
therefore precludmg precise inference on approxrmately how long27 the chain
remains in a particular state.?? On the other hand, posterior distributions of the
remaining regime characteristics (i.e. state-dependent log-volatility means and
variances) evidently cluster around their posterior means, although slight
asymmetries in their profiles may be observed (see Fig. 17 and 18).

¥ In terms of a part of the entire period over which the data is analyzed.
% We draw attention to the fact, that such an interpretation of the ergodic probabilities of a Mar-
kov chain is valid once the chain has converged to its stationary (ergodic, invariant) distribution.-
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Table 8

Posterior means and standard deviations (in parentheses) of selected regime charactenshcs
in model M, and M,

Regime characteristics
Model - " -
b5 T2 Durl\ Dury E1 E» Vi Vg
M 04736 | 05264 | 467.60 | 555.61 | —08396 | —29871 | 24658 | 24643
IMSSV(A] | (0.1873) | (0.1873) | (1149.07) | (5251.38) | (0.1639) | (0.1615) | (0.1967) |.(0.1964)
Ms 04104 | 05896 | 33752 | 48460 | -1.0254 | —24847.| 18301 | 3.8422
IMSSV()] | (01799) | (0.1799) | (80524) | (979.22) | (0.1600) | (0:1959) | (02428) | (0.3792)
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log-volatility means in model M,
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log-volatility variances in model M, and M, ,
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4.6, Bayesian model comparison

In Table 9 we present selected quantities (obtained via the Newton—Raftery
procedure) allowing Bayesian comparison of the analyzed models in respect
of their fit to the data. It is seen that both switching SV spec1f1cat10ns are strongly
preferred over the basm stochastic volatility model. Posterior probablhty29 of

Table 9

Logs of the margmal hkehhoods along with the posterior model probablhtles and logs :
. Lk of Bayes factors against model M, ;

' Number A
M . .
Mode} of parameters | log,, (¥ | M) Pr(M; | y) log1o Ba Rank
M; (BSV) 3 . 4408213 . | 6.215E-16 0 3
M; [MSSV ()] 6 _425.6148 0.999997 15.2066 1
Ms[MSSV(p)] | 6 ~431.0917 0.000003 9.7296 2
-380.00 ™1 lﬁyl-v‘rl‘rﬁl SN SN S RO B S I Rt B R N S B M S S E S
-390.00
~400.00 ‘ S \
. L,
~410.00 -
42000 }— - Tt = -
. Lo o e e o e e e o e —
B
-440.00 a
~450.00 -
8 83838333 s 538888383833 383 38
~log ply|M(1)] = — —log ply|M2)] - - - log Ply|M3)]

Fig. 19.;L04gs of the rharéinal hkelihoods of the models égainst the number of cycles

? Posterior model probabllltles, Pr(M Ir y), have been obtamed under equal prior probabilities
of the models, i.e. Pr(M)) = 1/3. .
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the model with a switching intercept is as much as about 10 times' the pos-
terior chances of the BSV model, and about 10° times the chances of the other
switching model: These are compelling arguments’ agamst the homogenelty
(i.e. the lack of structural shifts) of the modelled time ‘series.

~'Nevertheless, the results-may be considered somewhat dubious in view
of the notorious instability of the Newton-Raftery algorithm. Therefore, the
logs of the' marginal likelihood in each of the models and selected Bayes fac-
tors are plotted against the number of MCMC iterations (see Fig.'19 and 20).
We observe relative stabilization of these quantities only after about 650,000
cycles. More importantly, however, the ranking of the models remalns VISIbly
unchanged throughout (see Fig. 19) <
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Fig. 20. Logs of Bayes factors against the number of cycles

5. CONCLUSIONS

In the paper two special cases of a general Markov sw1tch1ng SV model are
under consideration. One of them allows discrete shifts only in the. intercept,
“ whereas the other — in the autoregression parameter of the latent log-vola-
tility process. Both constructions are capable of accounting for sudden changes
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in the mean volatility level. Hence, we aim to compare these two spec1f1cat1ons
in respect of .goodness:of their fit to the data... . : q
.- The.results of the Bayesian analysis of both switching models as Well as
a basic SV model provides compelling evidence against homogeneity of the
series. of the-AR(1)-residuals for.the daily WIBORIM interest rates, as evident
superiority. of the switching models over the BSV construction is observed.
Among them the one that features a; reglme-changmg intercept is undoubtedly
preferred the most. ' « :
- The two regimes are d1stmguxshable in terms of exther only the mean log-
volatility level (in the model with a switching intercept) or, additionally, the
state-dependent variances of the log-volatility process (while the autoregres-
sion parameter is allowed regime-changing). '
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APPENDIX

Under the notation established in Section 3, the ]omt posterxor dlstrlbutlon of
all the unknown quantities of the MSSV ‘model is decomposed as:

p(@.h,51y) = p(y | N)p(h15,6)p(S16)p(6),

Ind1v1dual components of the above factorization presents themselves as
follows

— ylh) an(yf‘O hy),

where: f\(y,10, h,) denotes the density function of é‘hormally distributed ran-
dom variable y, with mean and variance equal zero and h,, respectively;

T
— p(hlS,0)= Hfm(h, I'm,,c?),
t=1

where: f; (1, Im, 0?) denotes the density function of a log-normally distrib-
uted random variable &, with the scale parameter equal o2 and the location
parameter equal m, gwen as:
~{Hg +olnh,_, for MSSV (u)
"= u+ogInh_, for MSSV (p)°

— P(S16)= p(S,)p(S16) = (S TS 15,i6),

where p(S;) denotes the probability distribution of a discrete random variable
Sy In the study the latter does not constitute a quantity of interest, although
it is straightforward to accommodate the sampling algorithm so that inference
on S, is available.

Under the prior structure presented in Section 3, the following conditional
posterior distributions are obtained:

- p(piile_‘,ii,h,s,y)sz ii'n:Ib;)' fori=1,2,

where
B *
a =a +n,, b =b +n,,
* *
ay =0, +ny, by =b, +n,,

and

: T
ny = 1S, = DI(S, = j);
t=2
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— plo? l6_.,h,S,y)= f,c(0'2 lV;/V;);V

where ,

T 1< 1T
Vi==+v, v,=|=>(nh -m) +—| ;
17 2 V1s 2 [2;( t f) 02]

B0 5 ) <3)(ﬂlﬁ Ay, <0)I(1lpk1) for MSSV (1)
At RI(Y B o*A )I(R <DIR, <2) for MSSV (p)’

where

B. = AMo?A,By + W' Inh), A. =074, FWW, k= (lnhl lnhz, ,lnh,r),'

and ' '

1 .1(5,=2) Ink,

1 15,=2) 1 o

W= (2. VIR o Mssv (),

1 1(5,=2) lnhT :

1 I(Sl=1)1nh0 1(5 =2)Ink,

w=|} I(Sf})l“h“’. 1(52‘:2.)1“}5 for MSSV (¢);

L1 15, =/1.) Inf, IS =2)Inky.,

p(h,lG,h_,,AS,y)och}sexp(‘ y, )exp(—z——-(lnh w) ]

2h,
where
- for the MSSV(x) model:
v Y LI +o( +Inh
: fOl‘ t=1,2,.., T—]. Etz =ig_2’ w, = /.l (P.us +? l(p( nht+1 nn,_ 1>’
- "'(0
v for t=T: | 67? =07 Wr =ﬂs,5+§0h?1hh7j—'1’( ‘
: _for the MSSV(go) model B '
o fort=1,2,.. T—l: 5-‘i : o’ .U(l <Ps )+¢s lnh, 1+‘Ps 1 hm,
B ) ’ ‘/. T t‘;‘, 1+¢52H1 I f | e V v N .; 1+¢S(ﬂ - § ’

fort=T: o7 =02 =1 +go$T Inhy,.
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With regard to the conditional posterior distribution of vector 5 we only
note here that it can be decomposed as:

p(S16,h,y)=p(S:16,h, y)HP(S 15,01,0, 1, ")

t=1
where y' and . denotes the history of the observable process and the voIatlhty
process, respectively, up to moment t. The idea has been suggested by Carter
and Kohn (1994) and it is there that we refer for ‘further details.

The MCMC sam-p‘l'ing procedure

A full single cycle of thee MCMC ‘algorithm requires sampling each quantity of
interest from its conditional posterior distribution. We employ the Gibbs pro-
cedure to sample the model parameters and vector S. For sampling the con-
ditional volatilities, h,’s, we adapt the Metropolis-Hastings algorithm used by
Pajor (2003) in the case of non-switching SV models.

Let denote o @ the outcome on & from the g-th iteration3® (g=1,2,.., M,
M+1, .., M + N), and w_, — a vector consisting of the elements of @ without
its component ¢. Under this notation, a single full step of the sampling scheme -
proceeds as follows: ‘

Step 1: sample S"”) from p(S 167, h?,59, 1)
Note: For a detailed description of the algorithm of samphng from
p(S16 h,y) — see Carter and Kohn (1994);

Step 2: sample p7* Y fromp(p, 169 ,h®, 54, y), i =1, 2;

Step 3: sample BU* from p(B (02, pl4?, pitV, H®, 50D, yy;
Step 3* — only for the MSSV(¢) model31 (permututzon sampler; see
Fruhw1rth Schnatter, 2001):

- if oD < 1Y is violated, then:3

% For q = 0 we obtain. the set of starting values of the algorlthm

3 A note should be made here on sampling the model-specific parameters, f, when conside-
ring the MSSV(¢) model, i.e. Step 3* in the sampling scheme. In Section 2.2 the indentifiability con-
straint ¢, < ¢, is imposed. To guarantee that the restriction holds an additional step, called the
permutation sampler (see Frithwirth-Schnatter, 2001), is introduced to the Gibbs procedure. Once
a new fhas been sampled from its full conditional posterior distribution, we check whether the
inequality 9 <e is violated. If so, the subscripts ‘1’ and "2’ are simply-interchanged.so that the
restriction is valid again. Since prior to sampling 3 all the state variables, §,'s, and the transition
probabllmes are generated, they must be ‘updated’ (if (ol ‘and g, required sw1tch1ng) that is all the
ones and twos in vector.S as well as the subscripts of the probabilities p; need to be interchanged.
Relevant assumptions, theorems and proofs of the validity of such an algorithm are found in
Frithwirth-Schnatter (2001).

% By ":=" we denote the substitution operator.
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A = gD D = D (50 that ™! < {1 is guaranteed),

S0 = 31 — §9*D where 1,'=(1, 1, ..., Diry #

1 — 1 . L R
ptV =piil  for i, j=1,2

StEP 4: sample (O.Z)flﬂ) from p(o.z le_(_:;;l)’h(tl)’s(qﬂ)’y);
Step 5: (the Metropolis-Hastings step): sample each 47*V from
p(h, 'e(qmrh((;’:ﬂ;)fh((;’llzr)rs(qmry): where Ry = (g, hypys o 1)

with s € ¢



