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ABSTRACT

We check the empirical importance of some generalisations of the conditional distribution in
M-GARCH case. A copula M-GARCH model with coordinate free conditional distribution is con-
sidered, as a continuation of research concerning specification of the conditional distribution in
multivariate volatility models, see Pipief (2007, 2010). The main advantage of the proposed family
of probability distributions is that the coordinate axes, along which heavy tails and symmetry can
be modelled, are subject to statistical inference. Along a set of specified coordinates both, linear
and nonlinear dependence can be expressed in adecomposed form.

In the empirical part of the paper we considered a problem of modelling the dynamics of the
returns on the spot and future quotations of the WI1G20 index from the Warsaw Stock Exchange.
On the basis of the posterior odds ratio we checked the data support of considered generalisation,
comparing it with BEKK model with the conditional distribution simply constructed as a product
of the univariate skewed components. Our example clearly showed the empirical importance of
the proposed class of the coordinate free conditional distributions.

STRESZCZENIE

M. Pipien. Wielowymiarowe modele Copula M-GARCH o rozktadach niezmienniczych na transformacje
ortogonalne — bayesowska analiza dla notowan spot ifutures indeksu W1G20. Folia Oeconomica Craco-
viensia 2012, 53: 21-40.

W artykule przedstawiono uog6lnienie rozktadu warunkowego w wielowymiarowym modelu
typu GARCH, oraz poddano empirycznej weryfikacji skonstruowany model. Praca stanowi kon-
tynuacje badan prowadzonych przez Pipienia (2007, 2010) nad wtasciwg specyfikacjg rozktadow
warunkowych wektora stdp zmian instrumentéw finansowych. Zasadniczym elementem okre-
$lajgcym gietko$¢ rozwazanej klasy wielowymiarowych rozktadéw jest mozliwo$¢ zmiany uktadu
wspo6trzednych, i - tym samym — kierunkéw w przestrzeni obserwacji, wedtug ktérych grube
ogony i asymetria rozktadu moga wystepowac empirycznie. Zgodnie z przyjeta orientacja w prze-
strzeni obserwacji, mozliwe jest modelowanie zaleznosci pomiedzy elementami wektora losowego,
zaréwno o charakterze liniowym (stosowana transformacja liniowa) jak i nieliniowym (funkcja po-
wigzan, copula).
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W czeéci empirycznej przedstawiamy wyniki modelowania dynamicznych zaleznos$ci pomiedzy
zwrotami z notowania spot i futures indeksu WI1G20. Uzyskane rezultaty wskazujg na zasadnos¢
proponowanego uogélnienia stosowanego w modelu BEKK. Model z proponowanym typem roz-
ktadu warunkowego uzyskuje silne potwierdzenie empiryczne, mierzone ilorazem szans a poste-
riori i warto$cig brzegowej gestosci wektora obserwacji.
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1. INTRODUCTION

Most of contributions involved with multivariate GARCH (M-GARCH) models
— for a survey see Bauwens, Laurent and Rombouts (2006) — rely on the as-
sumption of the conditional Gaussian distribution. In spite of the fact that the
M-GARCH models are applied in modelling and predicting temporal depend-
ence in the second-order moments, some other properties of the conditional dis-
tribution, like for example fat tails and skewness, are also very important. This
result was confirmed by Bayesian comparison of GARCH-type models with nor-
mal and Student-i conditional distributions presented by Osiewalski and Pipien
(2004). In terms of the model data support, measured by posterior odds ratio and
posterior probabilities, they clearly showed that conditional normality is com-
pletely unrealistic in modelling financial time series. Hence, long journey beyond
normality is necessary — see Genton (2004) — for better understanding the de-
pendence structure between related time series in general, and between financial
returns particularly.

In the presence of empirical analyses decisively rejecting conditional normal
distribution, a few studies concentrated on the application of the conditional
distributions that allow both for heavy tails and asymmetry within M-GARCH
models. Some developments on this subject present Bauwens and Laurent (2005).
Modern propositions of modelling volatility and conditional dependence between
financial returns try to resolve the problem by complicating stochastic structure
of the model rather, than generalising explicitly conditional distribution. Recently
Osiewalski and Pajor (2009, 2010) propose MSF-BEKK model, as an example of
the process attributed with both, the flexibility of the Stochastic Volatility family
of models, and parsimony of parameterisation of simple M-GARCH covariance
structures. Some other, more complicated multifactor processes has been recently
proposed by Osiewalski and Osiewalski (2011, 2012). Those hybrid processes
can outperform pure M-GARCH specification, even in the case of conditional
normality. As an alternative to approach investigated by Osiewalski and Pajor
(2009, 2010) one may consider an explicit generalisation of the conditional
distribution, also leading to more empirically important specifications.
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In modelling volatility and dynamic dependence of returns of different finan-
cial assets, a linear dependence is economically interpretable and popular. Stand-
ard empirical exercises in financial econometrics, like controlling and pricing
risks, optimal portfolio allocation, analysing volatility transmission mechanism or
contagion and building hedging strategies, rely on solutions that are strictly con-
nected with measures of stochastic dependence of the linear nature. However
last decade have seen particularly strong attention in modelling dependence in a
nonlinear setting. One of the important topic of financial econometrics that made
substantial progress during last decade, relates to making inference about meas-
ures of stochastic dependence that are alternatives to the conditional correlation.

It seems that both, definition of a nonstandard distribution of observables,
and a more detailed analysis of dependence are crucial in proper modelling of
financial returns. One of the approaches that may resolve to some extent both is-
sues involves copula functions. The approach was intensively developed by Pat-
ton (2001, 2009), Jondeau and Rockinger (2006) and, in the case of Polish financial
market, by Doman (2008), Doman and Doman (2009), Jaworski and Pitera (2012)
and others. Vast empirical literature clearly indicate that volatility models built
within framework of copula functions contribute substantially to standard em-
pirical issues in financial econometrics stated above; see Embrechts, McNeil and
Straumann (2002), Bradley and Taqqu (2004), Rodriguez (2007), Chavez-Demoulin
and Embrechts (2010), Balkema, Nolde, Embrechts (2012).

The main goal of this paper is to check the empirical importance of some
generalisations of the conditional distribution in M-GARCH case. We generalise
the M-GARCH model proposed and empirically analysed by Pipien (2006, 2007)
who applied a novel class of probability distributions, which is coordinate free
in the sense formulated by Fang, Kotz and Ng (1990). Pipien (2010) considered
a multivariate distribution with independent components, with skewness
imposed according to the inverse probability integral transformations,
discussed in details by Ferreira and Steel (2006) and Pipien (2006). In the next
step, orthogonal transformation was incorporated in order to assure that fat
tails and also possible skewness can be imposed along a set of coordinate axes.
Consequently, the construct postulated the existence of a set of coordinate axes,
along which the univariate components are independent and the densities of the
marginal distributions are known analytically. Now we additionally consider a
generalisation, by imposing copula function that captures possible dependence
of nonlinear nature between elements of the random vector. The main advantage
of the proposed family of probability distributions is that the coordinate axes are
subject to statistical inference and can be very different from the ones defined by
canonical basis. Along a set of coordinates, supported by the data, both, linear
and nonlinear dependence can be modelled.

In the empirical part of the paper we consider the bivariate series of the
returns on the spot and futures quotations of the WIG20 index (WIG20 and
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FWIG20instruments) covering theperiod from 27.02.2008; t= 2053
observations.In mndelhngtfee condtoonel de.endencevl: the component r=
friebrvariate time series we consider Copula-BEKK(1,1) model with coordinate
free eondititnal divfrtoetion accordingto tfeepoetulates ef .ihecenttruet iloe
a comparison we also consider some restricted cases, leading to the much simpler
conditional distribution. We apply formal approach to test explanatory power of
a set of competing specifications, based on the posterior odds ratio, and discuss
superiority and possible practical usefulness of the considered coordinate free
ccndttione I dierribuOon.A ddieionallo tneposleriorinfeeenee about loovCinato
vnncis elso preoented.

2.A CLoesnOF ¢ «fiDtNiore fvee cONDmMOoNALD iseRiBUTIONS

Themoin goal ofthischpptar isto present a familyof mulTpariate skewed
distributions and apply it in the multivariate GARCH setting. The basic notion
eoneidered hece rnfrie nnified vepeeeentat™n of frie u nreariate skcwners friat
ap”~esinoeree peubaHlity inte~elfraneformation”~ropove. i m.oUybyFeoeefre
and Steel (2006). We follow the setting presented in the univariate case by Pipien
(2006, 2007) and by Pipien (2010) in multivariate case. The skewed version of
originally symmetric and unimodal density f(.] 0) (with cumulative distribution
function F(.] 0)) can be defined as follows:

s(x P,")=fx] &"p(F(\0) '), Ove x#R, 1)

where p(.] h) denotes the density of the distribution defined on the unit interval.
The asymmetric distribution s(.] 0,h) is obtained by application of the density
p(.] h) as a weighting function of the density f(.] 0). The case, when p(.] h) = 1,
restores symmetry. Any family of densities p(.]h), for h£H, defined over unit
interval, is called skewness mechanism. For a review of skewing mechanisms
that incorporate hidden truncation mechanism, some approaches based on
the inverse scale factors, order statistics concept, Beta or Bernstein distribution
transformation or a constructive method see Pipien (2006). The empirical
importance of the conditional skewness in modelling the relationship between
risk and return was also studied in the univariate case by Pipien (2007). Some
recent developments confirm results presented by Pipien (2007) that it is possible
to restore the relationship, mentioned above, once a highly nonstandard
stochastic process is considered in volatility modelling; see for example Markov
switching-in-mean Stochastic Volatility model, proposed by Kwiatkowski (2010).

Now let consider m-dimensional random vector £ = (fj,...,.em)' and let denote
byfi(.] 0i),....,/m(.]im a set of unimodal (with mode at zero) univariate densities,
parameterised by vectors 01,...,0mrespectively. In the first step, for i=1,...,m, we
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impose skewness mechanisms py.lal 011 densities (& |(9). Note that in general
the construct does not reqdire imposing the samd type of skewnoso medhseism
fcr oech z=1,...,sj. l,or simplisiOy, in ths (mhicicslparOot tht f~eXs. ets consiSer
thk case, whrse the oamt skewnees meshaniom is cansidosen foc each ¢S the
ccorninttot. Pssoiblo ditfenent ae (mmetoy effcctswi ili stoiiit Isrom ditfsreni vtiues
2. yarcmsCors Bini os”Kitidijo Sandity s,(. lgrkit tskes rquSsoen pm snseb in
eouation (10:

S,(xX\6Ind=fI(x\d)-pI(FI(x\6D) |n)t fsox#R rsd z=1,...,e,

where F(. Ji) denotes cumulative distribution function. Initially, for the random
vector a=(sc,....Enk svs defins Oke dieSeibutioo &1dd mdependebO asymmeeho
comhenents:

m

(coon)=H#(e,\ 0 ,, (2)

where a=(sa\...emy , =(m ,.,hm’)".

Pipien (2010) shows examples of distributions in bivariate cases indicating
that possible outliers and asymmetry can be captured by distribution (2) only
if those features of the data will occur along original coordinats axes, defined
by canonical basis in Rm Also, any family of distributions (2) is not closed with
respect to the orthogonal transformations of the components. Hence, in order to
improve flexibility of our class of distributions, a special mechanism that would
make the coordinate axes varying is incorporated according to the idea proposed
by yerreiraany yteel(2006). We pocrncis fto n the bos™ ofthie ftllowin”~meac
(sffine) transtermhhok of tnarangom vector f:

n=A £+n 3

fot e nonsingular ( KteD. 2 ~,,,,]tnd loestion =ector //”~ je,20. Tine dens.ty ostys
diitribution offlie oanciom victo ~ is definen by the following formula:

m

pOia,oSaA)n |k sr'1]ri!(0'-/i),4:11",," (a (4)
i=1

where Afldenotes the i-th column of A-1 If the densities f,(. 10,) are unimodal,
with mode at zero, then the distribution the vector of y in (4) is unimodal, with
mode defined by n and skewing mechanisms p,(.] h). Transformation matrix A
introduces the dependence between components of y, while h determines the
skewness of the independent components of £. Assuring the variability of the pa-
rameters, equation (4) generates a flexible class of multivariate distributions that
is closed under orthogonal transformations. Hence, the construct (4) is coordi-
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nate free, in the sense defined in Fang, Kotz and Ng (1990). In our approach we
do not restrict the distribution to the case that A is a square root of the symmet-
ric and positive definite covariancem atrix. Consequently, prartical ajcpticationcf
specific families of multivariate disMtmtinns ~ oequires interpreting the effect
of the transformation matrix A. With no loss of generality let assume in (3) that

n  Om*

n=Gfa-
According to the theorem presented in Golub and Van Losn (1993) any
nonsingulapmatonAj” ~ nonbew rittsn as the product of mxm orthogonal matrix
Omand upper triangular matrix U[mxm] with positive diagonal elements:

Anowe,

and sncWe decompotiUan(splled theQ n dscomposition) is unique. Now the re-
sults of the transformation matrix A can be considered in two steps:

y=A°e ={OmU'E= U'OmE£. (5)

Initially tht oanCamvnctor £ in t5tisn i/t S/t tfn aofattom)ii defOq=1) oc
iotoinvarslon (it datOmA-1). Thsn thevectoc £ = Om'P (t teansiarmedaccoading
to ttn coo”ji“ni™aiishncarbronat®matinn. The dieoribotion ef tho vector f
postulates that there exist a set of coordinate axes, along which the components
of p are independent and the densities of the marginal distributions are known
analytieally nhe moan diffarenoebatween drnfrtoa”~on n ~Min<f.”~ iothiaMhose
coordinata aees can vary Nnnclna a¥Wi oeunedbn tanoniao(n asis in.R”™'lhe
ontrirAon o- y isthen on amen by im°osin® scal e manafosmatiion oi | ihe
d™cifution ¢¥”, becaucem atclo | cao te mferpreredaathe gholesby equarr aaat
otche sywmeteioann nositivedonnitem atrixdefining covariance structure.

A paramatiip tamphng mode(tngtiqgcorporstss alpfrinutions Oetcribedby
anuaaan (Y )reqgn(aer unioue )one-to-anei parbmatansbtien o f tha law Uy 0Coo
thogonai maarice sOmrn ta® Alea comt resSrietien snave toUaimoosed ,inlxdea
toassnae inontifica(ion. Thr one-tooine pa”™erisatiunw as o”¢’vid”ciby Srewc
and ccao-) aaU -ernelm aao tteel IUOMAI™M an appnealionet tie HousehoCdes
matrices decomposition. Let denote V= (V1...,.Vm)' eRm the m-dimpnsional col-
umn vector. The Householder matrix H(V) (Householder reflection or House-
holder transformation) is defined as follows:

H(v) = Imv Vvv.

Golub and Van Loan (1983) show some useful properties of H(V). Firstly, for each
VsRmH(V) is orthogonal, and secondly H(V) = H(-V) = H(a V), for any scalar a~0.
From the second property if we restrict the vector V to the unit half sphere in Rm
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(denoted by HSm1) we will keep the coverage of the whole family of Householder
matrices.Parameterisation of the u nit halfsphereis easily obtained tfw ew rite
down the vector V~= (VIr..,Vn)' eHSmlin polar coordinates:
j L
ai=rin(a»i), aj= rm(oj) !Szlcos(rrs), forj<m, ank rs1:|cos(ms), (6)

where

( %2, %/2) if m=2
(0,%/2) x ( %/2, %/2)m3x (%%) if m>2.

Now, for any [mxm] orthogonal matrix Omwith detOm= -Im#, there exist unique
decomposition:

Om= H (~m-.. H(~2, @
to m-1 Householder reflections H (~) defined by vectors ~ [nx1] of the form:
~j  (omj, V-j) ,j 2,..m,

for m-j dimensional vector of zeros, omj= (0,...,0)" ifj<m and for an empty vector
forj = m. The vectors V~jeHSj-1are parameterised in terms of the polar coordina-
tes applied in (6). The interesting case is m = 2, where the class of Householder
reflections provide parametric family of orthogonal matrices of dimension [2x2]
with identification restrictions imposed; see Steward (1980), Golub and Van Loan
(1983).

3. ANOTHER STEP — INTRODUCING COPULA FUNCTIONS

Distribution of y, defined by the density (4), where A = OmU, with orthogonal ma-
trix Om parameterised according to decomposition (7), is obtained on the basis of
the linear transformation of a random vector £ with the density (2). Consequen-
tly, only linear dependence between random variables, representing coordinates,
can be modelled. Possible changes in coordinates that may be subject to statistical
inference, enriched flexibility of the family, however the nature of dependence of
elements of the vector y may still be linear. In order to model a more complicated
dependence structure in vector y we follow the approach that involves copula
functions.

Let consider a bivariate random variable z = (z1,z2)', with cumulative density
function (cdf) F and density function f, and with fi and Fi the density and cdf of
the marginal distribution of Z respectively (i= 1,2). According to Sklar (1959),
there exists a function C:[0,1]2”~ [0,1], with the following properties:
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1. C(uyu2) is increasing in uland u2
2. C(0u2=C(u10)=0,C(1,u2)=u2 C(uyl) =ul
3. For each (ulul,u2u2') e [0,1]4 such ul<ul' and u2<u2":

C(ul',u2)-C(ul',u2)-C(ulu2') + C(ulu2)>0,
such:
F(ZL22) = C(F ™), F2(22)).
The density of the joint distribution of z (if exist) is defined as follows:

f(z1,z2) =f1(z1) f2(z2) cd(F1(z1™ F2(z2))/

where:

cd(«i,“2) = «i,«2)-

"duldus ¢

Function C is called copula, and restores dependence reflected in the joint distri-
bution F, when marginal distributions F1 and F2 are considered. Function cd(e®)
is called the density of the copula C. In the case with C(ulu2)=ulu2, we have
F(z1,z2) = F1(z)F2(z2), Cdulu2) =1 and ffo”~) =fi(z:) fj(z2), hence C(ulu2) = ulu2
defines stochastic independence between z1 and z2. For detailed theory of copula
functions and of the concept of measuring stochastic dependence within copula
framework see Joe (1997) and Nelsen (2006).

Now, in the bivariate case (m = 2), we generalise our distribution of y, defined
by the density (4), by incorporating copula function in the distribution of the
random vector f. We consider arandom vector y of the form:

y=U'Om'z, (8)

with upper triangular matrix U and the orthogonal matrix Omdefined by (7) and
the bivariate random variable z with the following density:

p(z |e,h,900) = Sl(z1 1,h1) (22 [02,h2) A(S1(21), S2(z2)] 6 c0p), 9)

for the density cd of a particular copula function parameterised by the vector Qomp,
and skewed univariate densities s{ considered initially in (2). In (9) by S1 and S2
we denote cdf functions of those skewed univariate distributions. Introducing co-
pula function in the distribution ofy, according to (9), provides another source of
possible stochastic dependence in the random vector y, not involved with linear
transformation with matrix A, considered initially. The case with C(ulu2) = ulu2
(or equivalently cd(ulu2) = 1) restores independence in the vector z, and hence
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the distribution is defined just like for£ in (2). In thiscaseonly a Mreariief®™
rentelNeBNi™MnccordMateso fy cod be modelled.

4. THE SET OFCOMPETING SPECIFICATIONS

By yywe danoCe the two-dimensionti vee’Mr of logrrithmis returns nt time t) l.e.
y = (ywhr)r, Wher” cy, = 100In(xji/xj_ =. ae~dt™de]oees S*hevalue cYztlrifina~cinl
intruxN'mt at time/. Inxrdeyto moOaleynOiboncidapcnSoRaebstoreen cn ddo-
nents sftswe assume the following structure:

h = H<fitdjly H{vQ)> 7 = I<.. ti (210

whe=e y/j_e= e..jaael ) denotea™he Information setet t*r*ey. Rsndom bcriablh2
Zo= (amZ2b fcflaw tha dis?yi2ut<orl drfincSin j9ij where compoelehts s{. |Ctafea™
tneraewad ¥ 1X31/~ office M"nCNdi=<") Sfud rnlW derLsitiarw (th ~de0 erg¥¥yiof
freedom parameter (hence Oi= Oi), and skewness parameters hi- Matrix H(V~) in
(10) is a Householder reflection defined by:

VV'

H™) =ime; —

where V~= (sin~1cos~1), and ~le(-r/2; r/2). Symmetric and positive definite
matrix Hj(b,}j-i) follows BEKK(1,1) specification:

Hj(b,}j-i) = A+B 9riyr{-B'+C- Hj-i(b,}j-2 «C",
and b groups all required parameters, namely

b = (all,al2,a22,b11,b12b21,b22,c11,c12,c21,c22,).
Rewriting (10) in the following form:

yi=W zpj=1,.t

where Wj = H(V~) Hj"5b,}j-1), just like in (8), we can formulate the conditional
distribution of yp (with respect to }j-1) as a result of linear transformation of dis-
tribution of Zj, with transformation matrix Wj.

P(yj1}-1,01,02,h1,h2,~1,b, " 1)=
= JdetWj I4SL(y;* W j) IVLh1) 32(yj' W j) IV2h2) C d S'y W-In )S2(yf W-F2)] 9 @p),

where W2jo denotes i-th column of Wj1 and si(. JOi,hi) are skewed Student-t den-
sities:
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si(z °ihi) =fst(z 10,1,°))-P(FS(z |o,1,°i)] hi), ze R

with the density and cdf of the standardised Student-t distribution with zero
mode, unit precision and degrees of freedom parameter #>0 denoted by
/o(.10,1,0 andFst(.]0,l1,Vf) respectid'dy.

We considered five different single parameter copula functions, namely
Gaussian, Clayton, Frank, Plackett and Gumbel, together with the case of no
copulafunction. Thisgcves ussixcom peticg samplingmodels eollected in the
setedefiote™ b jt s.t®eone/ffttiecem ofcopulasanO)ts deosiiies canbefoimd in
Joe iSct™) anONesd™ O O d*The c¢Ni;of copula funcCon cpph”ce A*n™M{ mgir™™N
past odthepapnrie rnstgaied to onfy to ihe eases wdcse ooly a lieiglepafamsiee
ieiStle descrines cSer)eeNighrteNitl Nhs jAMddm dtrftes. t" oM otOYe i Mpii™ @inrdont
ateriboced with ricSeNrInritmeteNi™Y™n canbe found in Cnei(a9900

Tletesmpling medei ic detcoesee™d be s following product of the
ccendi™istl d o YSes:

t+k

pSy,yf\vr,vo,er,eo,mrAMr) r n PSyj\-j-r,vr,vo,er,eo,wr,$,Mr), (11)

where y = (yl...,yt) denotes the matrix of observed daily returns, while
yf= (yt+1,...yt+k) groups forecasted observables. In order to complete Bayesian
models, the prior distributions of all parameters must be stated. For the vector b
we adopted prior used in Osiewalski and Pipien (2004), for skewness parameters
hi and degrees of freedom parameters Viwe applied prior distribution studied by
Pipien (2007). Since the orthogonal component H(V~) in (10) is parameterised by
a single parameter ~1e(-r/2; r/2), we assumed for simplicity uniform prior over
the whole interval. Less trivial probability distributions, with some interesting to-
pological properties, adopted for a subset of the orthogonal matrices, were pro-
posed by Steward (1980).

All prior densities, except the one imposed on the parameter ~le(-r/2;
r/2), were investigated previously in our papers. As it was clearly shown by
Osiewalski and Pipien (2004) rand tPipien (2007) the prior information included
in the Bayesian models is very weak, as the prior distributions of parameters are
very diffuse. For parameters in copula functions we imposed normal distributions
truncated to the appropriate domain, with the prior mode at the point assuring
independence. Consequently, we do not specify any type of dependence between
coordinates and imposed appropriately diffused distributions. Consequently, the
conclusions drawn from the empirical analysis does not seem to be biased by the
prior knowledge, which is vague and not precisely stated in our case.

The main goal of the empirical part of the paper is to discuss the importance
of orthogonal component H(V~) and its form with respect to the type of the
copula function included in the sampling model. As an alternative to models
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in class H1 we also considered Copula-BEKK(1,1) specifications written in the
following way:

yj = Hjo5(b }j-i)'Zj, j=1,....t, (12)

with no orthogonal mechanism, changing coordinates, included. The assump-
tions concerning Z and Hj(b,}j-1) are remained unchanged. In particular the
distribution of Zz may involve five different form of copula function and also may
not involve copula. This gives us additional set of six competing specifications,
denoted by HO. The model 0 can be interpreted as a special case of (10), obtained
by imposing zero restriction on Householder vector = (0,0)', leading to the
case, where H(y~) = 12

5. EMPIRICAL ANALYSIS

In the empirical part of the paper we analyse bivariate time series of the logarith-
mic returns of the spot and futures quotations of the WI1G20 index, covering the
period from 21.12.1999 till 27.02.2008; t=2053 observations. The dataset, depicted
on Figure 1, together with some descriptive statistics, exemplifies rather compli-
cated nature of the dependence between both univariate time series. The possible
dependence is clearly determined by the coincidence of outliers, making the em-
pirical distribution considerably more dispersed along first and second quarter of
the Cartesian product, as compared with relative stronger concentration of daily
returns of spot and futures quotations with different sing at the same day. The
modelled time series covers rather long history of spot and futures trading on the
Warsaw Stock Exchange. But, we cut the dataset at the end of the February 2008
in order to compare our results of model comparison with those presented in
a much simpler model setting by Pipien (2010).

Another reason to focus on the considered time series is that possible
empirical importance of copula function in sampling model received so far
attention only during the financial crisis. There is vast literature suggesting
that during last global financial crisis, the dependence between financial time
series become very complicated and nonstandard. Hence, many authors clearly
indicated that copula functions are a promising tool in modelling time series
during crises and market crashes; see Bradley and Taqqu (2004), Rodriguez (2007),
Patton (2009). However, there is a little evidence in favour of the existence of
nonlinear dependence prior to the latest financial crisis.Consequently, we did not
updated our dataset and focus on the pre-crisis period. The empirical importance
of copula construct in the sampling model presented in this paper will be much
greater, if the data support will be obtained on the basis of the time series that
ends before global financial crisis.
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Table 1 presents theresults ofmodelcomparison.We consideredl2 compet-
ing specifications, imposing 5 different copula functions (Normal, Clayton, Frank,
Plackett and Gumbel) and no copula function. In all cases respectively, we con-
sidered existence of orthogonal transformation against conditional distribution
with marginal densities for both series defined as simply skewed Student-t dis-
frfoutiom. We denute by Hlthe tunsrt gomypelsfrethost2 ogsnal Irensfermar hn
included,w Hle bylHO a class of Copula-BEKK models with no free coordinates
in the conditional distribution. In Table 1 we put decimal logarithms of the mar-

Descriptive statistics
WIG20 FWIG20

Mean 0.0215  0.0284

Std.
Dev.

1.557 1.579

Skew 0.1612  0.1149
Kurt 45503  4.8788
Max  7.3724  9.8815
Min -6.3286 -7.7057

Correlation 0.3738

Figure 1. The plot of the daily returns on WI1G20 (vertical coordinate) and on FWIG20 (horizontal
coordinate) from 21.12.1999 till 27.02.2008; t=2053 observations.

Table 1

Decimal logarithms of the marginal data density values in all competing specifications,
and of the Bayes factor in favour of the existence of orthogonal component in model

Copula function Orthogonal No orthogonal Bayes factor in favour
applied in sampling component included component of model from H1
model (Hi) (Ho) against model from HO
No Copula -2974.9263 -2977.5126 2.5863
Normal -2971.2150 -2976.2267 5.0117
Clayton -2972.2007 -2977.7896 5.5889
Frank -2970.3253 -2973.0979 1.7726
Plackett -2966.0346 -2968.1112 2.0766

Gumbel -2973.3153 -2975.0409 41973
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ginal data density values in case of all models, and also decimal logarithms of
Bayes factors in favour of the existence of orthogonal component. The results
clearly indicate the empirical importance of copula functions in sampling model.
The model without the construct receives a little data support in both subsets H1
and HO invariantly within H1 and HO subset. The greatest data support both, in
case of H1 and HO, receives model with Plackett copula incorporated in sampling
function.

Another interesting issue concerning model comparison is that orthogonal
component always improves the explanatory power of models. In case of no
copula sampling models, and also for all copula functions, decimal logarithm
of the Bayes factor against pure Copula-BEKK specification is greater than one,
indicating in most cases the decisive support of this component in the sampling
model. This result seems to be invariant with respect to all remained parts of the
sampling model, and was suggested previously by Pipien (2010). Table 2 presents
the results of posterior inference about tail parameters in all models. We focus on
posterior mean and standard deviations of the degrees of freedom parameters of
the conditional distributions of univariate series. Within subsets of models H1 and
HO, the inference about the tails of the conditional distribution is relatively the
same. In case of models, where orthogonal component excluded in the sampling
model, posterior means of parameters V1 and V2 indicate that the conditional
distribution is not of Gaussian type, however the posterior uncertainty, as
measured by the posterior standard deviation, does not preclude strongly

Table 2

Posterior inference about tails of the conditional distribution in all competing specifications

Copula function

L . Orthogonal component included No orthogonal component
applied in sampling

(subclass of models H1) (subclass of models HO)

model
No Copula v15.64 (1.03) Vj 7.49 (1.98)
v218.93 (3.45) v210.85 (1.98)
Normal v16.94 (1.26) Vj 7.49 (1.35)
v218.37 (3.40) v210.84 (1.97)
v15.77 (1.05) Vj 7.25 (1.32)
v219.13 (3.49) v211.00 (2.01)
v16.93 (1.27) Vj 8.57 (1.59)
v219.65 (3.59) v211.42 (2.08)
Plackett v16.61 (1.21) Vvj 8.82 (1.61)
v218.95 (3.43) v212.00 (2.20)
Gumbel v15.51 (1.01) Vj 7.46 (1.33)

v219.34 (3.55)

v210.36 (1.83)
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the same type of tail behaviour for both coordinates. If we include orthogonal
transformation in sampling model, the posterior inference changes substantially,
but in the same way in case of all copula functions and also in no-copula case.
If we consider the mechanism that enables search for a set of coordinates, along
which possible heavy tails and asymmetry can be modelled, the results of
estimation of the properties of the conditional distribution in tails are changing.
In all cases in subset H1, invariantly with respect to the type of copula function,
tails of the conditional distribution of univariate coordinates are different. The
data clearly support heavy tails for the first coordinate, while the second one
exhibit the Gaussian type tails.

In order to illustrate changes in conditional distribution, when orthogonal
mechanism is included in the sampling model, we plotted the isodensities of zj
in case of models from subset HO (Table 3) and isodensities of a random variable
H(V~)'zj in case of models from subset H1 (Table 4). All parameters required to
draw the plots we chosen as posterior means. On the plots in Table 3 and 4, we
draw vectors representing coordinates appropriate in sampling models. In case
of models from subset HO we draw vectors proportional to the vectors from
canonical basis in R2 namely el=(10,0) and €2=(0,10). In case of model from H1
(Table 4) a set of coordinates are subject to posterior inference and hence we
present posterior means, together with the bands of the 95% HPD (Highest
Posterior Density) intervals for H(V~)'eland H(V~)'e2respectively.

Analysing isodensities plotted in Table 3 and 4 itis clear that the data support
different directions, than canonical, along which heavy tails and possible
asymmetry can be modelled. Copula functions change the shape of isodensities
strongly. However the most important feature of the sampling model seems to be
the existence of the orthogonal mechanism changing coordinates. Only in case
of models from subset H1, a more complicated dependence between observed
time series can be discovered, as the shapes of isodensities in Table 4 exhibit
considerable excess from regular "elliptical" shape. For models from subset HO,
without orthogonal mechanism, differences between shapes of isodensities of the
distribution of zj are rather minor among models. New, estimated, directions in
the sampling models from subset H1 (Table 4) are different from initial, canonical,
ones. Taking into account dispersion of the posterior distribution, the bands of
the HPD intervals for H(V~)'el and H(V~)'e2 are located far away from the case,
where H(V~)=12. This clearly makes models without orthogonal component
improbable in the view of the data. Additionally, changing directions in models
from subset H1 is nontrivial and does not only involve rotation. Comparing
vectors el and e2 with its corresponding images, we see that canonical basis is
subject to inversion and then to appropriate clock-wise rotation. This is due to
the properties of the Householder reflections applied in the construct. It enables
to search for optimal orientation in a more composed way.



Table 3

The plots of the isodensities of Z in models from class HO i.e. in sampling models with
no orthogonal component included. Isodensities are plotted on the basis of values of parameters equal to posterior means

No Copula Normal Clayton

TeSWPUXHIB

Frank Plackett Gumbel



Table 4 w

The plots of the isodensities of in models from class HO/ i.e. in sampling models with no orthogonal componentincluded.
Isodensities are plotted on the basis of values of parameters equal to posterior means



Table 5

Posterior inference about linear conditional dependence obtained on the basis of the elements of matrix i)
in case of the best copula function (Placket). All parameters assumed to be equal to posterior means

Linear conditional dependence in the best model in Linear conditional dependence in the best model in HO

1
20001010 20010730 20020521 20030307 20031222 20041007 20050725 20060511 20070223 20071211 19991221 20001010 20010730 20020521 20030307 20031222 20041007 20050725 20060511 20070223 20071211
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A very important question concerning discussed empirical analysis
involves possible conclusions about changes of the linear dependence between
modelled univariate series, when orthogonal component and copula function is
incorporated. In Table 5 we present plots of posterior expectations of conditional
correlations between returns of spot and futures quotations of WI1G20. Since
the results are practically the same in case of all pairs of models, we focus our
attention on the best models in H1 and HO respectively, both based on Plackett
copula function. In case of the best model from the set H1 the variability of the
conditional correlation coefficient seems to be only slightly less variable during
the whole time interval covering modelled time series.

Existence of orthogonal mechanism in sampling model does not seem to
influence the dynamics of conditional linear dependence strongly. Both series of
posterior expectations exhibit the same dynamic pattern, with strong variability
around value 0.4, starting from August the 12001, when Warsaw Stock Exchange
quoted WIG20 index officially for the first time.

6. CONCLUDING REMARKS

The main goal of this paper was to check the empirical importance of some
generalisations of the conditional distribution in M-GARCH case. We considered
copula M-GARCH model with coordinate free conditional distribution. We
continue research concerning specification of the conditional distribution in
multivariate volatility models started by Pipien (2007, 2010). The main advantage
of the proposed family of probability distributions is that the coordinate axes,
along which heavy tails and symmetry can be modelled, are subject to statistical
inference. Along a set of specified coordinates both, linear and nonlinear
dependence can be expressed in formal and composed form.

In the empirical part of the paper we considered a problem of modelling the
dynamics of the returns on the spot and future quotations of the WI1G20 index
from the Warsaw Stock Exchange. On the basis of the posterior odds ratio we
checked the data support of considered generalisation, comparing it with BEKK
model with the conditional distribution simply constructed as a product of the
univariate skewed components.

Our example clearly showed the empirical importance of the proposed class
of the coordinate free conditional distributions. Both, orthogonal component, and
copula function, are necessary in proper modelling of the conditional distribution
of the vector financial returns. The existence of the orthogonal transformation
of coordinates in observation space receives decisive data support invariantly
with respect to the existence copula function in the sampling model and to the
type of specified copula. The dataset support much different orientation in the
sample space along which heavy tails, asymmetry and dependence between
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coordinates, can be discovered. Among the class of copula function Plackett one
received the greatest data support. Generally, presented in the empirical part of
the paper noticeable flexibility of the class in directional modelling of the tails
and asymmetry suggests that possible applications, concerning futures hedging
or Value-at-Risk calculation, are very promising.
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