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ABSTRACT

We check the empirical importance of som e generalisations of the conditional distribution in  

M-GARCH case. A copula M-GARCH m odel w ith  coordinate free conditional distribution is con­
sidered, as a continuation of research concerning specification of the conditional distribution in 
multivariate volatility m odels, see Pipień (2007, 2010). The m ain advantage of the proposed family 

of probability distributions is that the coordinate axes, along w h ich  heavy tails and sym m etry can 

be m odelled, are subject to statistical inference. A long a set of specified coordinates both, linear 

and nonlinear dependence can be expressed in  a decom posed  form.
In the empirical part of the paper w e  considered a problem of m odelling the dynam ics of the 

returns on  the spot and future quotations of the WIG20 index from the Warsaw Stock Exchange. 
O n the basis of the posterior odds ratio w e  checked the data support of considered generalisation, 
com paring it w ith  BEKK m odel w ith  the conditional distribution sim ply constructed as a product 
of the univariate skew ed com ponents. Our exam ple clearly sh ow ed  the empirical im portance of 

the proposed class of the coordinate free conditional distributions.

STRESZCZENIE

M. Pipień. Wielowymiarowe modele Copula M -G A R C H  o rozkładach niezmienniczych na transformacje 
ortogonalne —  bayesowska analiza dla notowań spot i futures indeksu WIG20. Folia O econom ica Craco- 
viensia 2012, 53: 21-40.

W  artykule przedstaw iono uogóln ien ie  rozkładu w arunkow ego w  w ielow ym iarow ym  m odelu  

typu GARCH, oraz poddano em pirycznej weryfikacji skonstruow any model. Praca stanow i kon­
tynuację badań prow adzonych przez Pipienia (2007, 2010) nad w łaściwą specyfikacją rozkładów  

w arunkow ych wektora stóp zm ian instrum entów  finansowych. Zasadniczym  elem entem  okre­
ślającym giętkość rozważanej klasy w ielow ym iarow ych rozkładów jest m ożliw ość zm iany układu 

w spółrzędnych, i -  tym sam ym  —  kierunków  w  przestrzeni obserwacji, w ed łu g  których grube  

ogony i asymetria rozkładu m ogą w ystępow ać empirycznie. Zgodnie z przyjętą orientacją w  prze­
strzeni obserwacji, m ożliw e jest m odelow anie zależności pom iędzy elem entam i wektora losow ego, 
zarów no o charakterze lin iow ym  (stosowana transformacja liniowa) jak i nielin iow ym  (funkcja p o ­
w iązań, copula).
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W części em pirycznej przedstawiam y w ynik i m odelow ania dynam icznych zależności pom iędzy  

zwrotam i z notow ania spot i futures indeksu WIG20. U zyskane rezultaty wskazują na zasadność  

proponow anego uogólnienia stosow anego w  m odelu  BEKK. M odel z proponow anym  typem  roz­
kładu w arunkow ego uzyskuje silne potw ierdzenie em piryczne, m ierzone ilorazem szans a poste­
riori i wartością brzegow ej gęstości wektora obserwacji.
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1. IN T R O D U C T IO N

M ost of contributions involved w ith multivariate GARCH (M-GARCH) models 
—  for a survey see Bauw ens, Laurent and Rom bouts (2006) —  rely on the as­
sum ption of the conditional Gaussian distribution. In spite of the fact that the 
M -GARCH m odels are applied in m odelling and predicting tem poral depend­
ence in the second-order m om ents, some other properties of the conditional dis­
tribution, like for example fat tails and skewness, are also very  im portant. This 
result w as confirm ed by Bayesian com parison of GARCH-type m odels w ith nor­
mal and Student-i conditional distributions presented by Osiewalski and Pipień 
(2004). In term s of the m odel data support, m easured by posterior odds ratio and  
posterior probabilities, they clearly show ed that conditional norm ality is com ­
pletely unrealistic in modelling financial time series. H ence, long journey beyond  
norm ality is necessary —  see G enton (2004) —  for better understanding the de­
pendence structure betw een related time series in general, and betw een financial 
returns particularly.

In the presence of empirical analyses decisively rejecting conditional norm al 
distribution, a few studies concentrated  on the application of the conditional 
distributions that allow both for heavy tails and asym m etry within M-GARCH  
models. Some developm ents on this subject present Bauw ens and Laurent (2005). 
M odern propositions of modelling volatility and conditional dependence betw een  
financial returns try to resolve the problem  by com plicating stochastic structure  
of the m odel rather, than generalising explicitly conditional distribution. Recently  
Osiewalski and Pajor (2009, 2010) propose M SF-BEKK m odel, as an example of 
the process attributed w ith both, the flexibility of the Stochastic Volatility family 
of m odels, and parsim ony of param eterisation of simple M-GARCH covariance  
structures. Some other, m ore com plicated m ultifactor processes has been recently  
proposed by Osiewalski and Osiewalski (2011, 2012). Those hybrid processes 
can  outperform  pure M -GARCH specification, even in the case of conditional 
normality. As an alternative to approach investigated by Osiewalski and Pajor 
(2009, 2010) one m ay consider an explicit generalisation of the conditional 
distribution, also leading to m ore empirically im portant specifications.
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In modelling volatility and dynam ic dependence of returns of different finan­
cial assets, a linear dependence is econom ically interpretable and popular. Stand­
ard empirical exercises in financial econom etrics, like controlling and pricing  
risks, optimal portfolio allocation, analysing volatility transmission m echanism  or 
contagion and building hedging strategies, rely on solutions that are strictly con­
nected  w ith m easures of stochastic dependence of the linear nature. H ow ever  
last decade have seen particularly strong attention in modelling dependence in a 
nonlinear setting. O ne of the im portant topic of financial econom etrics that m ade  
substantial progress during last decade, relates to m aking inference about m eas­
ures of stochastic dependence that are alternatives to the conditional correlation.

It seem s that both, definition of a nonstandard  distribution of observables, 
and a m ore detailed analysis of dependence are crucial in proper m odelling of 
financial returns. O ne of the approaches that m ay resolve to some extent both is­
sues involves copula functions. The approach w as intensively developed by Pat­
ton (2001, 2009), Jondeau and Rockinger (2006) and, in the case of Polish financial 
market, by D om an (2008), D om an and D om an (2009), Jaworski and Pitera (2012) 
and others. Vast empirical literature clearly indicate that volatility m odels built 
within fram ew ork of copula functions contribute substantially to standard em ­
pirical issues in financial econom etrics stated above; see Em brechts, McNeil and  
Straum ann (2002), Bradley and Taqqu (2004), Rodriguez (2007), Chavez-Dem oulin  
and Em brechts (2010), Balkema, N olde, Em brechts (2012).

The m ain goal of this paper is to check the empirical im portance of some 
generalisations of the conditional distribution in M-GARCH case. We generalise 
the M-GARCH m odel proposed and empirically analysed by Pipień (2006, 2007) 
w ho applied a novel class of probability distributions, w hich is coordinate free 
in the sense form ulated by Fang, Kotz and N g  (1990). Pipień (2010) considered  
a m ultivariate distribution w ith independent com ponents, w ith skew ness 
im posed according to the inverse probability integral transform ations, 
discussed in details by Ferreira and Steel (2006) and Pipień (2006). In the next 
step, orthogonal transform ation w as incorporated in order to assure that fat 
tails and also possible skewness can be im posed along a set of coordinate axes. 
Consequently, the construct postulated the existence of a set of coordinate axes, 
along w hich the univariate com ponents are independent and the densities of the 
m arginal distributions are know n analytically. N ow  w e additionally consider a 
generalisation, by im posing copula function that captures possible dependence  
of nonlinear nature betw een elem ents of the random  vector. The m ain advantage  
of the proposed family of probability distributions is that the coordinate axes are 
subject to statistical inference and can be very  different from  the ones defined by 
canonical basis. Along a set of coordinates, supported by the data, both, linear 
and nonlinear dependence can be modelled.

In the empirical part of the paper w e consider the bivariate series of the 
returns on the spot and futures quotations of the W IG 20 index (W IG20 and
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FW IG2 0 i nstru m ents) cov ering  t h e p erio d from  27.02 .2008; t =  2053
observation s . In m ndelh n g tfee con d toon e1 d e . e n d e n c e vl: the com p onen t  r= 
fri e b rvariate time series we consider Copula-BEKK(1,1) m odel with coordinate  
free eon ditit n al divfrtoe tion accor d in g to  t f e e poetulates ê f: .i h e c e nt tru e t  iloe 
a com parison we also consider some restricted cases, leading to the m uch simpler 
conditional distribution. We apply form al approach to test explanatory pow er of 
a set of com peting specifications, based on the posterior odds ratio, and discuss 
superiority and possible practical usefulness of the considered coordinate free 
cc n dttion e l dierribuOo n .A ddieionallo tn e p o s ler io r in feeenee about l oovCinato 
vnncis elso preoented.

2 . A  C L o e s noF c <ê ĉ ]fiD tN ior e  f v e e  c o N D m o N A L D i s e R iB U T IO N S

T h e m oi n g o al of t hi s ch pptar i s t o present a family o f  m ulTpariate skew ed 
distributions and apply it in the multivariate GARCH setting. The basic notion  
eoneid ered  h ece rnfrie nnif i e d vepeeeenta t^ n of frie u nreariate skcw n ers friat 
a p ^ e s i n o eree peubaH lity  i n t e ^ e lf r anefo rm a tio n ^ ro p ove. i m .o U y b y F e oeefre 
and Steel (2006). We follow the setting presented in the univariate case by Pipień 
(2006, 2007) and by Pipień (2010) in multivariate case. The skew ed version of 
originally sym m etric and unim odal density f(.| 0 ) (with cum ulative distribution 
function F(.| 0 )) can be defined as follows:

s(x  | 0,")=fx| &)"p(F(x\ 0) |" ) ,  0ve x# R ,  (1)

w here p(.| h) denotes the density of the distribution defined on the unit interval. 
The asym m etric distribution s(.| 0 ,h ) is obtained by application of the density  
p(.| h) as a w eighting function of the density f(.| 0). The case, w hen p(.| h) =  1, 
restores symmetry. Any family of densities p(.|h), for h £ H, defined over unit 
interval, is called skew ness m echanism . For a review  of skew ing m echanism s  
that incorporate hidden truncation m echanism , som e approaches based on  
the inverse scale factors, order statistics concept, Beta or Bernstein distribution  
transform ation or a constructive m ethod see Pipień (2006). The empirical 
im portance of the conditional skew ness in m odelling the relationship betw een  
risk and return  w as also studied in the univariate case by Pipień (2007). Some 
recent developm ents confirm  results presented by Pipień (2007) that it is possible 
to restore the relationship, m entioned above, once a highly nonstandard  
stochastic process is considered in volatility modelling; see for example M arkov  
sw itching-in-m ean Stochastic Volatility m odel, proposed by Kwiatkowski (2010).

N ow  let consider m-dimensional random  vector £  =  (f j ,. .. ,e m) '  and let denote  
byfi(.| 0 i),...,/m (.| im) a set of unim odal (with m ode at zero) univariate densities, 
param eterised by vectors 0 1,...,0m respectively. In the first step, for i =  1,...,m, we
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im pose skew n ess m echanism s py . l a l  0 11 d ensities ( ■(. | (9,) . N ote th at in gen er al 
the constru ct does not reqdire im posing the sam d type of skew noso m edh s e ism  
fc>r oec h z = 1 , . . .,s j . I;or sim p lisiOy, in th s ( m hicics l p a r O ot th t  f>̂ e>es. ets consiSer 
thk case, w h rs e th e oam t  skew n ees m esh aniom is ca nsidosen foc each cS th e 
c c ornin t tot. Ps soiblo ditfenent ae ( m m etoy effcc ts w ili stoiiit lsrom ditfsreni v t iu es
2 .  y arc m sCors bTlmti os k̂itidijo Sandity s,( . | <t;rkit ts kes rquSsoen pm  snseb in
eouati on (10:

s,(x \6 ln d = f I(x\dI)-pI(FI(x\6l)  |n)t fso x # R  rsd  z= 1,...,e ,

w here F,(. | i )  denotes cum ulative distribution function. Initially, for the random  
v ector a = (s c,.. .,£mk  svs defins Oke dieSeibutioo  aeTidCi m d ep endebO asym m eeho 
com h e nents:

m

( c o o n )=  H # ( e ,  \ 0 , , (2)
i = l

w here a = (s>a\ ...,e my , = ( m  ,...,hm' ) ' .
Pipien (2010) show s exam ples of distributions in bivariate cases indicating  

that possible outliers and asym m etry can be captured by distribution (2 ) only  
if those features of the data will occur along original coordinats axes, defined  
by canonical basis in Rm. Also, any family of distributions (2) is not closed with  
respect to the orthogonal transform ations of the com ponents. H ence, in order to 
im prove flexibility of our class of distributions, a special m echanism  that w ould  
make the coordinate axes varying is incorporated according to the idea proposed  
by yer r e ir a a n y  yte e l (2006). We pocrncis ft o n th e bos^ o f t hie ft l low in ^ m e a c 
(s ffine) transte rm hh ok of tn a ran qom  vector f :

n =  A  £  + n  (3

fot  e non singular ( K teD. 2 ^,,,,,] t nd loestion =ector / / .^ je,2 0 . Tine dens.ty  os ty s 
dii tribution offli e oan ciom  v i c t o ^ i s definen by the following formula:

m

p O ia, o S aA)n |dc s r ' 1| r i ! ( 0 ' - / i ) ,4 ' 11 ", , " ( a (4)
i =1

w here A f 1 denotes the i-th colum n of A -1. If the densities f,(. 10,) are unim odal, 
with m ode at zero, then the distribution the vector of y  in (4) is unim odal, with 
m ode defined by n  and skew ing m echanism s p,(.| h ). Transformation m atrix A  

introduces the dependence betw een com ponents of y, while h determ ines the 
skewness of the independent com ponents of £. Assuring the variability of the p a­
ram eters, equation (4) generates a flexible class of multivariate distributions that 
is closed under orthogonal transform ations. H ence, the construct (4) is coordi­
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nate free, in the sense defined in Fang, Kotz and N g  (1990). In our approach we 
do not restrict the distribution to the case that A  is a square root of the sym m et­
ric and positive definite cov arianc e m atrix. Consequently, prartical ajcpticat io n c f  
specific f amilies of m ultivariate disM tm tinns ^ oequires interpreting the effect 
of the transform ation m atrix A. W ith no loss of generality let assum e in (3) that

n  0 [mxl]*

n =  Gf' a -

According to the theorem  presented in Golub and Van L o s n (1993) any  
nonsingulapm ato nAj^ ^ non b e w rittsn as the product of mxm orthogonal matrix  
O m and upper triangular m atrix U[mxm] w ith positive diagonal elements:

A n o w e ,

and sncWe decom pot iU an (sp lled th e Q n dscom position) is unique. N ow  the re­
sults of the transform ation m atrix A  can be considered in tw o steps:

y  =  A ° e  =  {OmlU '£ = U 'O m £ . (5)

Initi ally th t  oan Cam  v nctor £  i n t 5 t i s n i l̂^ S t̂t tfn  aofattom )ii defOq =  l ) oc
i otoinvarslon (it datOmA- l ). Thsn th e v e c to c £  =  O m'P ( t  teansiarm e d a c c o ading  
to t tn  coo^ji^ni^̂ t a i i s hn c a rb ronat^^matinn. The dieoribo tion ef th o vector f  
postulates that there exist a set of coordinate axes, along w hich the com ponents  
of p are independent and the densities of the m arginal distributions are know n  
analytieally nhe m oan diffareno e batw een drnfrtoa ^ on n ^^i^<f. ^  i o thiaM hose  
co ordinata aees can vary  l̂:nnc l n â a^^ î o eun e d b n t anoniao( n asis i n .R ^ 'I h e  
ĉ ntri^ A o n  o- y is t h e n  on am en by im ° osin°  scal e manafosmat:ion oi l ih e 
d̂ t̂cif û tion ĉ f ^, becauce m atclo I cao t e m ferprere d a a the q holesby equarr  aaat 
o tc he syw meteio a n n nositiv ed onnite m a trixdefining covariance structure.

A p aram atiip t am phng m ode( t n q t i q c orpors ts s alpfrinutions Oetcrib e d b y  
anu a a a n ( У )reqn(aer unioue )one-to -anei p arbm atan sbtien o f tna law Uy oC o o  

thogonai m aarice s Om rn ta^ Alea com t  resSrietien s n ave t o U a im o osed , i n l :>cdea 
to a s s nae inontifica(ion. Thr one-to o in e p a ^^^e^^risatiun w a s  o ĉ̂ vid^c iby Srewc 
and ccao-) aaU - e rnelm a a o  t t e el IUÔ ^A I^  ̂ an appneali o n e t t i e H ousehoCdes 
m atrices decom position. Let denote V =  (V1,...,Vm)' e R m, the m -dimpnsion al col­
um n vector. The H ouseholder m atrix H(V) (H ouseholder reflection or H ouse­
holder transform ation) is defined as follows:

2
H (v )  = I   vv ' .

m v v

Golub and Van Loan (1983) show  som e useful properties of H(V). Firstly, for each  
V s R m H(V) is orthogonal, and secondly H(V) =  H (-V) =  H (a V), for any scalar a ^ 0. 
From  the second property if we restrict the vector V to the unit half sphere in Rm
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(denoted by HSm-1) we will keep the coverage of the whole family of H ouseholder 
m atrice s .P a ra m e terisation of th e u nit h alf s p here i s easily obtained t f w e w rite 
dow n the vector V~ =  (V1r ..,Vm) '  eH S m-1 in polar coordinates:

j m-1
ai=rin(a»i), aj= rm (oj) !  cos(rns) ,  for j<m , am=  n  cos( ms) ,  (6)

s=1 s=l

w here

( % / 2, % /2) i f  m = 2 

(0,%/2) x ( %/2, %/2)m-3 x (%,%) i f  m > 2.

Now, for any [mxm] orthogonal m atrix O m w ith detO m =  - l m+1, there exist unique 
decomposition:

Om =  H (~ m)-... H (~ 2), (7)

to m -1 H ouseholder reflections H (~ )  defined by vectors ~ [ mx1] of the form:

~ j  (om-j, V~j) , j  2 ,...,m,

for m-j dimensional vector of zeros, om-j =  (0 ,...,0 ) '  if j < m  and for an em pty vector  
for j  =  m. The vectors V~jeHSj-1 are param eterised in term s of the polar coordina­
tes applied in (6 ). The interesting case is m =  2, w here the class of H ouseholder 
reflections provide param etric family of orthogonal m atrices of dim ension [2x2 ] 
with identification restrictions im posed; see Stew ard (1980), Golub and Van Loan  
(1983).

3. A N O T H E R  ST E P  —  IN T R O D U C IN G  C O P U L A  FU N C T IO N S

Distribution of y, defined by the density (4), w here A  =  OmU, with orthogonal m a­
trix O m, param eterised according to decom position (7), is obtained on the basis of 
the linear transform ation of a random  vector £  w ith the density (2). Consequen­
tly, only linear dependence betw een random  variables, representing coordinates, 
can be modelled. Possible changes in coordinates that m ay be subject to statistical 
inference, enriched flexibility of the family, how ever the nature of dependence of 
elem ents of the vector y  m ay still be linear. In order to m odel a m ore com plicated  
dependence structure in  vector y  we follow the approach that involves copula  
functions.

Let consider a bivariate random  variable z  =  (z1,z2) ' ,  w ith cum ulative density  
function (cdf) F and density function f, and w ith f i and Fi the density and cdf of 
the m arginal distribution of Zi respectively (i =  1,2). A ccording to Sklar (1959), 
there exists a function C :[0,1]2 ^  [0,1], w ith the following properties:
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1 . C(uyu2) is increasing in u1 and u2
2. C(0,u2) =  C (u1,0) =  0, C(1,u2) =  u2, C(u1,1) =  u1

3. For each (u1,u1' ,u 2,u2' )  e [0,1]4, such u1< u 1' and u2< u 2' :

C(u1' ,u 2')-C (u1' ,u 2)-C(u1,u2' )  + C(u1,u2)>0,

such:

F(Z1,Z2) =  C ( F ^ ) ,  F2(Z2)).

The density of the joint distribution of z (if exist) is defined as follows:

f(z1,z2) =  f1(z1) f2(z2) cd (F1(z1̂  F2(z2))/

where:

cd( « i , “ 2 )  =  ^ —  ( « i , « 2 ) -
duldu2

Function C is called copula, and restores dependence reflected in the joint distri­
bution F, w hen m arginal distributions F1 and F2 are considered. Function cd(•,•) 
is called the density of the copula C. In the case w ith C(u1,u2) =  u1u2, w e have  
F(z1,z2) =  F1(z1)F2(z2), Cd(u1,u2) =  1 and f f o ^ )  =  f 1 (z1 ) fj(z2), hence C(u1,u2) =  u1u2 

defines stochastic independence betw een z1 and z2. For detailed theory of copula  
functions and of the concept of m easuring stochastic dependence within copula  
fram ew ork see Joe (1997) and Nelsen (2006).

Now, in the bivariate case (m =  2), w e generalise our distribution of y, defined 
by the density (4), by incorporating copula function in the distribution of the 
random  vector f . We consider a random  vector y  of the form:

y  =  U'Om 'z,  (8)

with upper triangular m atrix U  and the orthogonal m atrix Om defined by (7) and  
the bivariate random  variable z  w ith the following density:

p(z  | e ,h ,9cop) =  S1(z1 | 01,h1) S2(z2 | 02,h2) Cd(S1(21), S2(z2)| 6 cop), (9)

for the density cd of a particular copula function param eterised by the vector Qcop, 
and skew ed univariate densities s{, considered initially in (2). In (9) by S1 and S2 

w e denote cdf functions of those skew ed univariate distributions. Introducing co­
pula function in the distribution of y , according to (9), provides another source of 
possible stochastic dependence in the random  vector y , not involved w ith linear 
transform ation with m atrix A , considered initially. The case w ith C(u1,u2) =  u1u2 

(or equivalently cd (u1,u2) =  1) restores independence in the vector z, and hence
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the distribution is defined just like fo r £  in (2 ). In th i s c a s e only a ^̂ nêa r i i ef ê̂î - 
î en ĉel îe T̂a î^^nc ĉ ord ^nates o f y cod be modelled.

4. T H E SE T  O F C O M P E T IN G SPEC IFIC A TIO N S

By yyw e danoOe the tw o-dim ensionti v ee^ r̂ of logr rithm is r eturns nt time t’, l.e . 
y  = (yw,h r) r, v\̂ her^ cy, =  100ln(xji/xj_= .  ae^dt ^̂ ,̂cle]^oees Ŝ hevalue ĉ tztl r̂ i fina^ci^l 
i n^trux î̂ nt at tim e /. I n x rde y to m o0 ale y n 0 ibon c i dapc nS oR aebs toreen cn ddo- 
nents s f t s we assume the following structure:

h  =  H$ < f i t-efj_1y H{v 0J) > 7  =  1< . ..,ti (210

w h e=e y/j_e =  e ...ja;ae1/ П) d enotea^:he Inform ation set e t t^r^ey. R sn d o m bcriablh2 

Zo= (a?■icZJ2b fc>Пaw t h a dis ŷi2 ut<orl dr finc S i n j9ij w here com poeLehts s,-( . | Ĉia f̂ea^^
tn e r a e w ad ¥ 1X31 /^  o f f ice t̂^nC r̂di^< ĉ0 Sfud r nlW derLsitia rw (t h d̂■> 0  e r ĝ î î jiof 
freedom  param eter (hence 0 i =  Oi), and skewness param eters hi- M atrix H(V~) in 
(10) is a H ouseholder reflection defined by:

V V '
H  " )  = I m 2 - — ,

V 'V
!  !

w here V~ =  (sin ~ 1,c o s ~ 1), and ~ 1e ( - r /2 ;  r /2 ) .  Sym m etric and positive definite 
m atrix Hj(b ,} j - i )  follows BEKK(1,1) specification:

H j(b ,}j-i) =  A + B  • yr iyr { - B ' + C -  H j-i(b ,}j-2) • C ',  

and b  groups all required param eters, nam ely

b  =  (a11,a12,a22,b11,b12,b21,b22,c11,c12,c21,c22,) .

Rewriting (10) in the following form:

yj =  W zp j  =  1,...,t,

w here Wj =  H(V~) Hj°'5( b , } j -1), just like in (8), we can form ulate the conditional 
distribution of yp (with respect to } j -1) as a result of linear transform ation of dis­
tribution of Zj, with transform ation m atrix Wj.

P (yj I }-1 ,01,02,h1,h2,~1,b , ̂ 1) =

=  |detWj I -1S1(y; ' W j )  I V1,h1) 32(yj' W j )  I V2,h2) C d S y  W-1m )S 2 (y f  W-1p(2))| 9 Cop),

w here W^jo denotes i-th colum n of W j1, and si(. | Oi,h i) are skewed Student-t den­
sities:
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si(z 1 ° ih i )  =  f st(z l0,1,°i)-P(FSt(z |0 ,1,° i )| hi), z e R

w ith the density and cdf of the standardised Student-t distribution w ith zero  
m ode, unit precision an d degr ees of freedom  p aram eter l# > 0  denoted  by 
/ o(. 10 ,1 , 0  an d Fst( . | 0 , l ,Vf) respectid'dy.

We considered five different single param eter copula functions, nam ely  
Gaussian, Clayton, Frank, Plackett and Gumbel, together w ith the case of no  
copul a function. This g c v es u s s ix c o m p etic g  sam p lin g m odels eollected i n the  
sêledefiote^ b jt F̂ s. t ê e o n e ]̂̂ftt (̂i e ĉ em  of c o pula s anO )ts deosiiies c a n b e foim d in 
Joe iSct^ ) anO N esd^ O O d^ T h e c^i; of copula funcCon cp ph^ce ^n^^tj ^ mg îr^̂ l̂ 
p ast od th e p a p nr i e rnstg a ied to onfy t o ih e eases w d cse ooly a l ieig le p afam siee 
ie iS t0e d êscrines cSer)ee îiê irte^it l ĥs j ŝ̂ î ddm dtr̂ (̂ 1tes. t ôo^^otÔ ê i ^̂ pi l̂  ̂ Ounrd  ont  
ateriboced with ricŜ ê rrJnri^mete î̂ ^̂ l̂̂ ^n can b e  found i n Cnei(a99O0

Tle te s^mplin g  m e dei ic detcoesee^̂ d̂ be  Sh s follow ing  produ ct of the 
c ĉ e d̂i^^ist t̂i d^o î̂ Siê s:

t+k

pSy,yf\vr,vo,er,eo,mrAM r) r  n  PSyj\-j-r,vr,vo,er,eo,wr,$,Mr),  (11)

w here y  =  (y1,...,yt) denotes the m atrix of observed daily retu rn s, while 
yf  =  (yt+1,...,yt+k) groups forecasted observables. In order to com plete Bayesian  
models, the prior distributions of all param eters m ust be stated. For the vector b  
w e adopted prior used in Osiewalski and Pipien (2004), for skewness param eters 
hi and degrees of freedom  param eters Vi we applied prior distribution studied by 
Pipien (2007). Since the orthogonal com ponent H(V~) in (10) is param eterised by 
a single param eter ~ 1e ( - r / 2 ; r / 2), we assum ed for simplicity uniform  prior over 
the whole interval. Less trivial probability distributions, w ith som e interesting to ­
pological properties, adopted for a subset of the orthogonal matrices, w ere pro­
posed by Stew ard (1980).

All prior densities, except the one im posed on the param eter ~ 1e ( - r /2 ;  
r /2 ) ,  w ere investigated previously in our papers. As it w as clearly show n by  
Osiewalski and Pipien (2004) rand tPipien (2007) the prior inform ation included  
in the Bayesian m odels is very  w eak, as the prior distributions of param eters are 
very  diffuse. For param eters in copula functions w e im posed norm al distributions 
truncated  to the appropriate dom ain, w ith the prior m ode at the point assuring  
independence. Consequently, we do not specify any type of dependence betw een  
coordinates and im posed appropriately diffused distributions. Consequently, the 
conclusions draw n from  the empirical analysis does not seem  to be biased by the 
prior know ledge, w hich is vague and not precisely stated in our case.

The m ain goal of the empirical part of the paper is to discuss the im portance  
of orthogonal com ponent H(V~) and its form  w ith respect to the type of the 
copula function included in the sam pling model. As an alternative to models
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in class H 1 we also considered Copula-BEKK(1,1) specifications w ritten in the 
following way:

yj =  Hj05(b ,}j-i) 'Z j, j=1,... ,t ,  (12)

with no orthogonal m echanism , changing coordinates, included. The assum p­
tions concerning Zj and H j(b ,} j -1) are rem ained unchanged. In particular the 
distribution of Zj m ay involve five different form  of copula function and also m ay  
not involve copula. This gives us additional set of six com peting specifications, 
denoted by H0. The m odel 0 can be interpreted as a special case of (10), obtained  
by im posing zero restriction on H ouseholder vector =  (0 ,0 ) ',  leading to the  
case, w here H(y~) =  I2.

5 . E M PIR IC A L ANALYSIS

In the empirical part of the paper w e analyse bivariate time series of the logarith­
mic returns of the spot and futures quotations of the W IG20 index, covering the 
period from  21.12.1999 till 27.02.2008; t= 2 0 5 3  observations. The dataset, depicted  
on Figure 1, together w ith som e descriptive statistics, exemplifies rather compli­
cated nature of the dependence betw een both univariate time series. The possible 
dependence is clearly determ ined by the coincidence of outliers, making the em ­
pirical distribution considerably m ore dispersed along first and second quarter of 
the Cartesian product, as com pared with relative stronger concentration of daily 
returns of spot and futures quotations w ith different sing at the sam e day. The 
modelled time series covers rather long history of spot and futures trading on the 
W arsaw  Stock Exchange. But, we cut the dataset at the end of the February 2008  
in order to com pare our results of m odel com parison w ith those presented in 
a m uch simpler m odel setting by Pipien (2010).

A nother reason to focus on the considered time series is that possible 
empirical im portance of copula function in sam pling m odel received so far 
attention only during the financial crisis. There is vast literature suggesting  
that during last global financial crisis, the dependence betw een financial time 
series becom e very  com plicated and nonstandard. H ence, m any authors clearly  
indicated that copula functions are a prom ising tool in m odelling time series 
during crises and m arket crashes; see Bradley and Taqqu (2004), Rodriguez (2007), 
Patton (2009). How ever, there is a little evidence in favour of the existence of 
nonlinear dependence prior to the latest financial crisis.Consequently, we did not 
updated our dataset and focus on the pre-crisis period. The empirical im portance  
of copula construct in the sam pling m odel presented in this paper will be m uch  
greater, if the data support will be obtained on the basis of the time series that 
ends before global financial crisis.
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Table 1 presents th e r e s ults o f m od e l com pariso n .W e consid e r e d l 2  com pet­
ing specifications, im posing 5 different copula functions (Norm al, Clayton, Frank, 
Plackett and Gumbel) and no copula function. In all cases respectively, w e con­
sidered existence of orthogonal transform ation against conditional distribution  
with marginal densities for both series defined as simply skewed Student-t dis- 
frfoutiom . We denute by H 1 th e t uns rt go m ype l s fret h o st2 og s n al lrensfer m ar hn 
inclu ded ,w H le by1 H0 a class of Copula-BEKK m odels w ith no free coordinates  
in  the conditional distribution. In Table 1 we put decimal logarithm s of the mar-

Descriptive statistics

WIG20 FWIG20

Mean 0.0215 0.0284

Std.

Dev.
1.557 1.579

Skew 0.1612 0.1149

Kurt 4.5503 4.8788

Max 7.3724 9.8815

Min -6.3286 -7.7057

Correlation 0.3738

Figure 1. The plot of the daily returns on  WIG20 (vertical coordinate) and on  FWIG20 (horizontal 

coordinate) from 21.12.1999 till 27.02.2008; t=2053 observations.

Table 1

Decimal logarithms of the marginal data density values in  all com peting specifications, 

and of the Bayes factor in  favour of the existence o f orthogonal com ponent in  m odel

Copula function  

applied in  sam pling  

m odel

Orthogonal 

com ponent included  

(Hi)

N o  orthogonal 
com ponent 

(H0)

Bayes factor in  favour 

of m odel from H1 

against m odel from H0

N o Copula -2974.9263 -2977.5126 2.5863

Norm al -2971.2150 -2976.2267 5.0117

Clayton -2972.2007 -2977.7896 5.5889

Frank -2970.3253 -2973.0979 1.7726

Plackett -2966.0346 -2968.1112 2.0766

Gumbel -2973.3153 -2975.0409 4.1973
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ginal data density values in case of all m odels, and also decimal logarithm s of 
Bayes factors in favour of the existence of orthogonal com ponent. The results 
clearly indicate the empirical im portance of copula functions in sam pling model. 
The m odel w ithout the construct receives a little data support in both subsets H1 

and H0 invariantly within H 1 and H0 subset. The greatest data support both, in 
case of H 1 and H0, receives m odel w ith Plackett copula incorporated in sampling 
function.

A nother interesting issue concerning m odel com parison is that orthogonal 
com ponent always im proves the explanatory pow er of models. In case of no 
copula sam pling m odels, and also for all copula functions, decimal logarithm  
of the Bayes factor against pure Copula-BEKK specification is greater than one, 
indicating in m ost cases the decisive support of this com ponent in the sampling 
model. This result seem s to be invariant with respect to all rem ained parts of the 
sam pling m odel, and w as suggested previously by Pipien (2010). Table 2 presents 
the results of posterior inference about tail param eters in all models. We focus on  
posterior m ean and standard deviations of the degrees of freedom  param eters of 
the conditional distributions of univariate series. Within subsets of models H1 and  
H0, the inference about the tails of the conditional distribution is relatively the 
same. In case of m odels, w here orthogonal com ponent excluded in the sampling 
m odel, posterior m eans of param eters V1 and V2 indicate that the conditional 
distribution is not of Gaussian type, h ow ever the posterior uncertainty, as 
m easured by the posterior standard  deviation, does not preclude strongly

Table 2

Posterior inference about tails of the conditional distribution in  all com peting specifications

Copula function  

applied in  sam pling  

m odel

Orthogonal com ponent included  

(subclass of m odels H 1)

N o  orthogonal com ponent 

(subclass of m odels H0)

N o  Copula
V 1 5.64 (1.03) 

V 2 18.93 (3.45)

V j 7.49 (1.98) 

V 2 10.85 (1.98)

Norm al
V 1 6.94 (1.26) V j 7.49 (1.35)

V 2 18.37 (3.40) V 2 10.84 (1.97)

V 1 5.77 (1.05) V j 7.25 (1.32)

V 2 19.13 (3.49) V 2 11.00 (2.01)

V 1 6.93 (1.27) V j 8.57 (1.59)

V 2 19.65 (3.59) V 2 11.42 (2.08)

Plackett
V 1 6.61 (1.21) V j 8.82 (1.61)

V 2 18.95 (3.43) V 2 12.00 (2.20)

Gumbel
V 1 5.51 (1.01) V j 7.46 (1.33)

V 2 19.34 (3.55) V 2 10.36 (1.83)
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the sam e type of tail behaviour for both coordinates. If we include orthogonal 
transform ation in sam pling m odel, the posterior inference changes substantially, 
but in the sam e w ay in case of all copula functions and also in no-copula case. 
If we consider the m echanism  that enables search for a set of coordinates, along  
w hich possible h eavy tails and asym m etry  can be m odelled, the results of 
estimation of the properties of the conditional distribution in tails are changing. 
In all cases in subset H1, invariantly w ith respect to the type of copula function, 
tails of the conditional distribution of univariate coordinates are different. The 
data clearly support heavy tails for the first coordinate, while the second one 
exhibit the Gaussian type tails.

In order to illustrate changes in conditional distribution, w hen orthogonal 
m echanism  is included in the sam pling m odel, w e plotted the isodensities of zj 

in case of m odels from  subset H0 (Table 3) and isodensities of a random  variable 
H(V~)'zj in case of m odels from  subset H 1 (Table 4). All param eters required to 
draw  the plots we chosen as posterior means. O n the plots in Table 3 and 4, we 
draw  vectors representing coordinates appropriate in sam pling models. In case 
of m odels from  subset H0 w e draw  vectors proportional to the vectors from  
canonical basis in R2, nam ely e1 =  (10,0) and e2=(0,10). In case of m odel from  H 1 

(Table 4) a set of coordinates are subject to posterior inference and hence we 
present posterior m eans, together w ith the bands of the 95% H PD  (Highest 
Posterior Density) intervals for H (V~)'e1 and H (V~)'e2 respectively.

Analysing isodensities plotted in Table 3 and 4 it is clear that the data support 
different directions, than canonical, along w hich h eavy tails and possible 
asym m etry can be modelled. Copula functions change the shape of isodensities 
strongly. H ow ever the m ost im portant feature of the sam pling m odel seem s to be 
the existence of the orthogonal m echanism  changing coordinates. O nly in case 
of m odels from  subset H1, a m ore com plicated dependence betw een observed  
time series can be discovered, as the shapes of isodensities in Table 4 exhibit 
considerable excess from  regular "elliptical" shape. For m odels from  subset H0, 
w ithout orthogonal m echanism , differences betw een shapes of isodensities of the 
distribution of zj are rather m inor am ong models. New, estimated, directions in 
the sam pling m odels from  subset H1 (Table 4) are different from  initial, canonical, 
ones. Taking into account dispersion of the posterior distribution, the bands of 
the H PD  intervals for H (V~)'e1 and H (V~)'e2 are located far aw ay from  the case, 
w here H(V~) =  I2. This clearly m akes m odels w ithout orthogonal com ponent 
improbable in the view  of the data. Additionally, changing directions in models 
from  subset H 1 is nontrivial and does not only involve rotation. C om paring  
vectors e1 and e2 w ith its corresponding im ages, we see that canonical basis is 
subject to inversion and then to appropriate clock-wise rotation. This is due to 
the properties of the H ouseholder reflections applied in the construct. It enables 
to search for optimal orientation in a more com posed way.



Table 3

The plots of the isodensities of Zj in m odels from class H 0/ i.e. in sam pling m odels w ith  

no orthogonal com ponent included. Isodensities are plotted on  the basis of values of parameters equal to posterior m eans

No Copula Normal Clayton
Tue Sw 0? U:2<;55. 2003

Frank Plackett Gumbel



The plots of the isodensities of in  m odels from class H 0/ i.e. in  sam pling m odels w ith no orthogonal com ponent included.

Isodensities are plotted on the basis of values of parameters equal to posterior m eans

Table 4 w



Table 5

Posterior inference about linear conditional depend en ce  obtained on  the basis o f  the elem ents o f  matrix i)

in  case o f  the best copula function (Placket). All parameters assum ed to be equal to posterior m eans

Linear conditional dependence in the best model in Linear conditional dependence in the best model in H0

20001010 20010730 20020521 20030307 20031222 20041007 20050725 20060511 20070223 20071211
-1
19991221 20001010 20010730 20020521 20030307 20031222 20041007 20050725 20060511 20070223 20071211
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A v ery  im p ortan t question con cern in g  discussed em pirical analysis 
involves possible conclusions about changes of the linear dependence betw een  
m odelled univariate series, w hen orthogonal com ponent and copula function is 
incorporated. In Table 5 w e present plots of posterior expectations of conditional 
correlations betw een returns of spot and futures quotations of W IG20. Since 
the results are practically the sam e in case of all pairs of models, we focus our 
attention on the best m odels in H 1 and H0 respectively, both based on Plackett 
copula function. In case of the best m odel from  the set H1 the variability of the 
conditional correlation coefficient seem s to be only slightly less variable during  
the w hole time interval covering modelled time series.

Existence of orthogonal m echanism  in sam pling m odel does not seem  to 
influence the dynam ics of conditional linear dependence strongly. Both series of 
posterior expectations exhibit the sam e dynam ic pattern, with strong variability 
around value 0.4, starting from  August the 1st 2001, w hen W arsaw  Stock Exchange  
quoted W IG 20 index officially for the first time.

6 . C O N C L U D IN G  REM ARKS

The m ain goal of this paper w as to check the empirical im portance of some 
generalisations of the conditional distribution in M -GARCH case. We considered  
copula M -GARCH m odel w ith coordinate free conditional distribution. We 
continue research concerning specification of the conditional distribution in 
multivariate volatility m odels started by Pipien (2007, 2010). The m ain advantage  
of the proposed family of probability distributions is that the coordinate axes, 
along w hich heavy tails and sym m etry can be modelled, are subject to statistical 
inference. Along a set of specified coordinates both, linear and nonlinear 
dependence can be expressed in formal and com posed form.

In the empirical part of the paper w e considered a problem  of modelling the 
dynam ics of the returns on the spot and future quotations of the W IG20 index 
from  the W arsaw  Stock Exchange. O n the basis of the posterior odds ratio we 
checked the data support of considered generalisation, com paring it w ith BEKK  
m odel with the conditional distribution simply constructed as a product of the 
univariate skew ed com ponents.

O ur example clearly show ed the empirical im portance of the proposed class 
of the coordinate free conditional distributions. Both, orthogonal com ponent, and 
copula function, are necessary in proper modelling of the conditional distribution 
of the vector financial returns. The existence of the orthogonal transform ation  
of coordinates in observation space receives decisive data support invariantly  
with respect to the existence copula function in the sam pling m odel and to the 
type of specified copula. The dataset support m uch different orientation in the 
sam ple space along w hich heavy tails, asym m etry and dependence betw een
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coordinates, can be discovered. A m ong the class of copula function Plackett one 
received the greatest data support. Generally, presented in the empirical part of 
the paper noticeable flexibility of the class in directional m odelling of the tails 
and asym m etry suggests that possible applications, concerning futures hedging  
or Value-at-Risk calculation, are very  promising.
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